1 前言
卷积神经网络(Convolutional Neural Networks, CNN)的核心是进行卷积运算操作。在实际应用中往往采用多层网络结构,因此又被称为深度卷积神经网络。本文将从单个卷积的计算出发,带大家掌握卷积层在神经网络中的运算方法。
2 标准卷积结构
2.1 单个卷积的计算
要想了解卷积层在神经网络中的计算过程,我们首先需要了解单个“卷积”是如何运作的。
想必大家在学习CNN的过程中都见过下图(出处在此,这上面有各种各样的卷积gif图):
input_shape=(5,5),kernelsize=(3,3),padding=‘same’,stride=1,output_shape=(5,5)
在此图中:
- 蓝色部分代表原图(或“前一层特征图”),数值为原图的像素值;
- 绿色部分代表卷积所得到的结果(或“后一层特征图”),数值为计算所得像素值;
- 白色虚线部分代表扩充的padding,数值为0(此时padding=‘same’,向外扩充1格以保证前后特征图大小一致);
- 在蓝白图上不停扫动的深色矩形代表卷积核(数值由随机初始化而来)。
在此次计算中:
- 当卷积核扫到底图(蓝+白)的左上角时,卷积核中的9个数字依次与底图上的9个数字相乘,而后对这乘得的9个数字进行求和,这样我们就得到了顶图(绿)的第一个值。
- 以此类推,我们每进行一次上述运算,都把卷积核的位置向右移动一位,等卷积核向右移动到头时,就把卷及核向左归位并下移一行,继续进行同样的运算。
- 待上图的长、宽都与底图相等时,这一次卷积也就计算完了。
Ps:在实际应用中,每一个输出的特征图还会配备一个偏置bais,在上图中无表示。
2.2 卷积层在神经网络中的运算
了解完单个卷积是如何计算的之后,我们就可以从神经网络的角度来看‘卷积层’的运算过程了。下图展示的是输入三通图像(8*8*3)经一层卷积结构,输出两通特征图(8*8*2)的计算过程:
卷积参数:input_shape=(8,8,3),kernelsize=(3,3),padding=‘same’,stride=1,output_shape=(8,8,2)
在此图中:
- A:原图(3通道,8*8)
- B:展平了方便看的原图
- C:不同的卷积核(以颜色和虚线类型区分)
- D:不同卷积核在底图上扫过所得到的单个计算结果图(以颜色和虚线类型区分)
- E:展平了方便看的输出图
- F:输出图(2通道,8*8)
在此次卷积层的运算中:
首先我们来关注一下输入和输出,他俩的尺度都是(8*8),而输入是3通道,输出是2通道(深度学习中不管干啥一定要先看输入输出,对一层是这样,对整个模型也是这样)。
其次就准备进入我们最熟悉的卷积核计算了,可是在此之前我们得知道,这个运算过程中到底发生了几次卷积核计算呢?有的朋友可能要说,卷积的一大特性就是‘权值共享’,有几通输出就有几个卷积核,每个卷积核把输入特征图从头扫到尾。然而这个其实是不对的!
实际上,在卷积核计算数量问题上,应该是“有几通道的输出就有几套卷积核,每套内的卷积核数量与输入通道数相等”,就像我在上图中所画的:
- 由C中的上下两套,每套三个卷积核去扫输入的3张图(颜色一一对应);
- 得到D中的两套,每套3张计算结果图;
- 在经求和及加入偏置量,得到要输出的2通道结果。
至此,这一个卷积层的运算就全部完成了。
2.3 “可训练参数”验证
毕竟空口无凭,下面我来通过“可训练参数”的数量,来为大家验证一下卷积层是不是按我说的这么运算的。大家应该知道,一个卷积层内的“可训练参数”,其实就是指的卷积核里的那些值,以及要加的偏置量,那么如果按照前面描述的计算方法来看,一个卷积层内的“可训练参数有多少呢”?我们可知:
- 我们的卷积核边长为3(简写为 k w k_{w} kw 及 k h k_{h} kh )
- 输入3通道(input_channel,简写为 C i n C_{in} Cin )
- 输出2通道(output_channel,简写为 C o u t C_{out} Cout )
由此可得到:
- 单个卷积核内的参数量为: k w ∗ k h = 3 ∗ 3 = 9 k_{w} * k_{h}=3*3=9 kw∗