【2021】知识图谱导论(陈华钧)——阅读思考与笔记

tips:其中所有【】表示的内容为博主本人想法,非作者观点,请注意辨别。

这是一本全面覆盖知识图谱多个方面的书籍。书中不仅详细介绍了知识图谱的表示、存储、获取、推理、融合、问答和分析等七大方面,还深入探讨了多模态知识图谱、知识图谱与图神经网络的融合、本体表示学习、事理知识图谱,以及知识增强的语言预训练模型等新兴热点和发展趋势。 

目录

1.重要观点摘录

2.自我思考

1.语义网络结合框架系统提升问答质量。

2.使用知识图谱的方式与其的存储方式存在关系。

3.推理方式思考

4.图的基本模型

3.精读部分

1.基于符号逻辑的知识图谱推理

2 基于表示学习的知识图谱推理

3.基于嵌入学习的知识图谱推理

3.基于规则学习的知识图谱推理

4.本体嵌入

5.知识图谱融合


1.重要观点摘录

1.知识图谱是一种世界模型
知识图谱本质上可以看作一种世界模型World Model、纵观人工智能相关方向的发展历史,一直有一个核心的命题是寻找合适的万物机器表示,用于记录有关世界的知识。
知识图谱同时拥抱机器的符号表示和向量表示,并能将两者有机地结合起来解决搜索、问答、推理和分析等多方面的问题,关于这一点的介绍也将贯穿本书的始终。

2.知识图谱具有人工智能的基因,这可以追溯到1960年,人工智能领域学者提出的知识表示方法语义网络的本质就是一种知识图谱的表示方式

3.知识图谱也具有很鲜明的互联网基因互联网的发展特别是万维网的发展促进了人类知识的共享开放领域数据如Wikipedia的众包积累,没有万维网数十年积累的开放数据,也不会有谷歌的知识图谱。

4.知识图谱的价值

知识图谱支持语义搜索
知识图谱支持的事物级别而非文本级别的搜索,大幅度提升了用户的搜索体验谷歌在2012年推出知识图谱支持的新搜索引擎时,提出的口号是“Things,Not Strings!"
知识图谱支持智能问答
智能问答本质就是一种对话式的搜索,相比普通的搜索引擎,智能问答更加需要事物级的精确搜索和直接回答
当前,实现智能问答功能主要有三种形式,第一种是问答对,第二种形式要求给定问句就能直接从大段文本中准确地定位答案,第三种是知识图谱。
知识图谱支持下的推荐系统
知识图谱的引入丰富了User和ltem的语义属性和语义关系等信息,将大大增强User和Item的特征表示,从而有利于挖掘更深层次的用户兴趣。

5.知识图谱的两个核心技术维度
从知识的视角,关心怎么表示概念和实体,怎样刻画它们之间的关系,怎样进1步表示公理、规则等更加复杂的知识
随着深度学习的兴起,怎样利用向量表示实体和关系产生了KG Embedding的技术领域。怎样利用神经网络来实现逻辑推理则产生了Neural Symbolic Reasoning等新兴的技术领域。
从图的视角,关心图中的节点、边、链接、路径、子图结构,怎样存储大规模的图数据,怎样利用图的结构对图数据进行推理、挖掘与分析等
知识图谱一方面比纯图的表达能力更强,能建模和解决更加复杂的问题。另外一方面又比传统专家系统时代的知识表示方法采用的形式逻辑更简单,同时容忍知识中存在噪声,在构建过程更加容易扩展,因此得到了更为广泛的认可和应用。

6.知识图谱的技术栈
知识图谱涉及的技术要素可以分为表示、存储、抽取、融合、推理、问答和分析等几个方面
例如,从表示的维度,涉及最基本的属性图表示和RDF图模型,以及更复杂知识的OWL本体表示和规则知识建模。
存储的维度,涉及怎样利用已有的关系数据库存储知识图谱,也涉及性能更高的原生图存储、图查询语言等。
抽取的维度,涉及怎样从文本中抽取概念、识别实体以及抽取三元组和事件等更为复杂的结构化知识
融合的角度,涉及怎样实现本体映射和概念匹配,以及实例层的实体对产等技术。
推理的角度,涉及基于传统符号逻辑的推理技术,以及新兴的基于表示学习和神经网络的推理技术。
问答的角度,涉及问句理解、语义解析、答案生成和实体链接等多个智能问答领域的技术

分析的角度,涉及传统的图算法,以及利用图嵌入、图神经网络等技术对知识图谱数据进行深度挖掘和分析等方面的技术。


在解决一个实际问题时,通常仅需要用到其中若千技术的组合,但对它们进行体了解和全面把握,对于提出系统性的解决方案会有很大帮助。

7.知识图谱领域最常用的表示是符号表示和向量表示两种方法
符号表示方法包括RDF、OWL等
RDF(Resource Description Framework)是资源描述框架的缩写,它是一种用于描述Web资源的语言。
OWL(Web Ontology Language)是网络本体语言的缩写,它是一种基于XML的语言,用于描述网络上的本体。
向量表示方法包括Word2Vec、 GloVe等
Word2Vec是一种浅层神经网络模型,用于将词汇表中的单词转换为向量
GloVe是一种基于全局词频统计的词嵌入模型,用于将词汇表中的单词转换为向量。

8.将符号表示和神经网络方法相互结合是知识表示的重要发展方向,特别是对于知识图谱,这两者的有机融合也是知识图谱的构建和应用非常重要的基本技术路线,这一点也将贯穿于本书的始终。

9.图的结构和语义类型信息是进一步构建更加复杂知识结构的基础
知识图谱中包含两类信息,一类是图的结构信息,另一类是由节点和边的标记所包含的语义类型信息。

10.知识图谱推理的两种方法

推理能力是人类心智区别于普通物种的重要特征之一。人类通过推理,从已知的事实中获取和习得新的知识。利用机器实现类似于人类心智的推理能力是人工智能自诞生以来最核心的目标和任务之一。
构建各种各样的知识图谱来描述客观世界,抽象万物之间的逻辑关系,不只是为了查询和搜索关于万物的信息,更是为了能够基于这些关于事物的描述性事实,去推断、归纳和预测未知的事实
基于符号逻辑的推理:从知识表示的维度,即:怎样表示和描述知识,进而完成推理.
基于表示学习的推理:从知识表示学习的角度,希望基于表示学习和神经网络来完成知识推理两种推理方法的比较
两种推理实现形式对于知识图谱的推理应用是同等重要的,两种推理方法各有优缺点,需要根据具体应用场景选择合适的方法。可以集成两者的一些方法,以发挥各自的优势。

        符号表示是一种显式的知识表示方法,它的最大优势是可解释性很好。而向量表示的优势是比较易于捕获隐含的知识,例如可以利用两个实体在向量空间的位置推算它们可能存在的各种关系。这很重要,因为永远无法显式描述所有的知识。但向量表示的最大缺点是丢失了符号表示的可解释性。参数化的数值对机器是友好的,但不利于人来理解。

【大模型将向量表示做到了极致,而我重新回顾知识图谱的目的就是重新利用知识图谱的符号表示获得可解释性】

从推理模式的维度,主要从演绎推理和归纳推理两个维度进行划分。演绎推理更多依赖于显式的知识描述和逻辑推导,而归纳推理则更多地依赖于大数据和机器学习方法。

【同样的,归纳推理的可解释性不好,所以我会更关注本文的演绎推理是怎么实现的】

在本书中,将分别介绍基于符号表示的演绎推理方法,如利用本体公理或Datalog实现的推理;基于符号表示的归纳推理,如利用图结构做归纳的路径

### 回答1: 《知识图谱导论》是陈华钧教授所著的一本关于知识图谱技术和应用的专业书籍。知识图谱是一个用于描述和组织知识的图形化模型,它以节点和边表示实体和实体之间的关系,并通过采集、表示和推理等技术来构建全面准确的知识库。 这本书首先介绍了知识图谱的基本概念和历史背景,包括知识图谱的起源和发展、传统数据库的区别等。然后,书中详细介绍了知识图谱的构建过程,包括知识获取、知识表示、知识存储和知识推理等关键步骤。同时,还介绍了一些常用的知识图谱构建工具和平台。 此外,书中还对知识图谱在不同领域的应用进行了深入讨论。例如,在搜索引擎中,知识图谱可以提供更精准的搜索结果;在推荐系统中,知识图谱可以帮助理解用户的需求,并进行个性化推荐;在智能问答系统中,知识图谱可以实现更高效准确的问答。 总之,《知识图谱导论》涵盖了知识图谱的基本理论和方法,以及它在各个领域的具体应用。这本书对于研究者、开发人员以及对知识图谱感兴趣的读者来说都是一本很好的参考书,可以帮助更好地理解和应用知识图谱技术。 ### 回答2: 《知识图谱导论》是由陈华钧编写的一本关于知识图谱的教材。知识图谱是一种具有结构化知识表示和语义关联的知识库,通过将实体、属性和关系以图形的方式表示,有助于机器理解和推理知识。这本书以系统介绍知识图谱相关的基础概念、方法和应用为主要内容,包括知识表示、知识抽取、知识融合、知识推理等方面的内容。 在这本书中,陈华钧首先介绍了知识图谱的基本概念和发展背景,然后详细讨论了知识图谱的构建方法,包括知识抽取和知识融合等技术。此外,书中还介绍了知识推理的相关算法和应用领域,如问答系统、推荐系统和智能搜索等。 《知识图谱导论》的特点是系统性和权威性。作者结合自身多年的研究经验,详细介绍了知识图谱的理论和实践,不仅提供了理论框架,还给出了实际应用案例。这本书适合从事知识图谱研究的学生和研究者阅读,也可作为相关专业课程的教材使用。 总而言之,《知识图谱导论》是一本全面介绍知识图谱的教材,内容丰富、权威,对于研究者和学习者来说都是一本不可多得的好书。读者可以通过阅读这本书来深入了解知识图谱的概念、构建方法和应用,为相关领域的研究和实践提供指导和参考。 ### 回答3: 《知识图谱导论》是由陈华钧编写的一本关于知识图谱导论性教材。知识图谱是一种以图形形式表示、存储和查询知识的方法,它主要由实体、属性和关系构成。这本教材对知识图谱的概念、构建、表示和应用进行了全面系统的介绍。 首先,教材介绍了知识图谱的起源和背景,讨论了它在人工智能领域的重要性和应用前景。接着,教材详细讨论了知识图谱的建模方法和构建过程,包括实体的识别和分类、属性的提取和定义、关系的建立和表示等。 教材还介绍了知识图谱的表示形式,包括RDF(资源描述框架)、OWL(Web本体语言)等,以及知识图谱的存储和查询技术。此外,教材还讨论了知识图谱的扩展和更新方法,以及知识图谱的质量评估和维护等问题。 教材还介绍了知识图谱在各个领域的应用,包括自然语言处理、信息检索、推荐系统等。最后,教材还探讨了知识图谱的未来发展方向和挑战,提出了一些研究方向和问题。 《知识图谱导论》是一本全面介绍知识图谱的教材,适合作为人工智能、信息检索、自然语言处理等相关专业的学生学习参考。通过学习这本教材,读者可以了解知识图谱的基本概念和原理,掌握知识图谱的建模和表示方法,了解知识图谱的应用领域和未来发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值