Mask R-CNN环境配置(RTX2060s+Cuda10.2+cudnn8.2)
前言
分享一个跑通的Mask R-CNN环境。
一、环境配置
在官方的文档中有如下说明:
Requirement:Python 3.4, TensorFlow 1.3, Keras 2.0.8 and other common packages listed in requirements.txt
但我们的GPU为RTX 2060s,在之前做开发的时候装过Cuda 10.2,以此为背景配置环境。
环境配置如下:
Cuda:10.2
Cudnn:cudnn-10.2-windows10-x64-v8.2.2.26
Python=3.5
Tensorflow-gpu=1.13
Keras=2.0.8
Pycocotools=2.0.2
二、具体步骤
1.Anaconda
可以参考这篇文章,讲的是Anaconda+VSCode:https://blog.csdn.net/zlezi666/article/details/95874956
2.Python
新建一个环境
然后运行
conda install tensorflow-gpu=1.13
pip3 install -r requirements.txt//此处requirements.txt替换成文件的绝对路径,即用鼠标将文件拖动到Terminal窗口中
conda install keras=2.0.8//默认安装的Keras版本太高,需要降低版本
pip install Pycocotools==2.0.2//demo中需要使用Pycocotools
最后用VSCode打开Mask R-CNN所在的文件夹
在VSCode中的Terminal中
python setup.py install
打开demo.py,在右上角将Kernel换成刚配置好的环境,运行即可