基于Anaconda+VSCode的Mask R-CNN环境配置(RTX2060s+Cuda10.2+cudnn8.2)

本文详细介绍如何在配备RTX2060s显卡和Cuda10.2环境下,针对CUDA版本、Python、TensorFlow及Keras进行配置,包括使用Anaconda创建新环境,安装特定版本库如Pycocotools,以便成功运行MaskR-CNN的demo.py。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mask R-CNN环境配置(RTX2060s+Cuda10.2+cudnn8.2)


前言

分享一个跑通的Mask R-CNN环境。


一、环境配置

在官方的文档中有如下说明:
Requirement:Python 3.4, TensorFlow 1.3, Keras 2.0.8 and other common packages listed in requirements.txt
但我们的GPU为RTX 2060s,在之前做开发的时候装过Cuda 10.2,以此为背景配置环境。
环境配置如下:
Cuda:10.2
Cudnn:cudnn-10.2-windows10-x64-v8.2.2.26
Python=3.5
Tensorflow-gpu=1.13
Keras=2.0.8
Pycocotools=2.0.2

二、具体步骤

1.Anaconda

可以参考这篇文章,讲的是Anaconda+VSCode:https://blog.csdn.net/zlezi666/article/details/95874956

2.Python

新建一个环境
Anaconda新建环境
然后运行
Terminal

conda install tensorflow-gpu=1.13
pip3 install -r requirements.txt//此处requirements.txt替换成文件的绝对路径,即用鼠标将文件拖动到Terminal窗口中
conda install keras=2.0.8//默认安装的Keras版本太高,需要降低版本
pip install Pycocotools==2.0.2//demo中需要使用Pycocotools

最后用VSCode打开Mask R-CNN所在的文件夹
VSCode
在VSCode中的Terminal中

python setup.py install

打开demo.py,在右上角将Kernel换成刚配置好的环境,运行即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值