以下是对腾讯算法工程师面试问题的分类与高频问题分析(基于从各网站收集到的45道问题,总出现次数58次)。按技术领域整合为6大核心类别,按占比排序并精选高频问题标注优先级(1-5🌟):
一、算法与数据结构(占比31.0%,面试核心)
手撕代码高频考点:二分、动态规划、链表操作
优先级 | 问题 |
🌟🌟🌟🌟🌟 | 非负整数的根号实现(二分法)(3次) |
🌟🌟🌟🌟 | 求数组局部最小值(2次) |
🌟🌟🌟🌟 | 反转链表(1次) |
🌟🌟🌟 | 无序数组中第K大的数(1次) |
二、机器学习与深度学习(占比25.9%)
模型原理与优化重点:Transformer、微调策略、损失函数
优先级 | 问题 |
🌟🌟🌟🌟🌟 | Transformer结构详解(2次) |
🌟🌟🌟🌟 | 大模型微调方法(LoRA/P-Tuning等)(2次) |
🌟🌟🌟 | 损失函数对训练效果的影响(Charbonnier/Perceptual等)(1次) |
🌟🌟🌟 | SENet结构与应用场景(2次) |
三、项目深度追问(占比20.7%)
考察技术深度与落地能力
优先级 | 问题 |
🌟🌟🌟🌟 | 如何验证Demo功能与效果?(1次) |
🌟🌟🌟 | 特征工程细节(如正负样本比例)(1次) |
🌟🌟🌟 | 强化学习状态/动作/奖励设计(1次) |
四、模型调优基础(占比12.1%)
工程实践关键知识
优先级 | 问题 |
🌟🌟🌟🌟 | XGBoost调参方法(1次) |
🌟🌟🌟 | L1/L2正则化区别(1次) |
🌟🌟 | 单阶段 vs 二阶段目标检测差异(1次) |
五、前沿技术方向(占比6.9%)
考察技术视野
优先级 | 问题 |
🌟🌟🌟 | AIGC技术了解程度(1次) |
🌟🌟 | VQGAN数据集量级(1次) |
六、行为与规划(占比3.4%)
职业动机评估
优先级 | 问题 |
🌟🌟 | 职业规划(1次) |
🌟 | 为何加入互联网(1次) |
✅ 高频问题核心规律
- 领域权重排名:
- 算法与数据结构(31.0%)> 机器学习(25.9%)> 项目深度(20.7%)
- 这三类占比77.6%,覆盖近八成问题
- 5星问题特征:
- 二分法求根号(3次)体现基础算法能力
- Transformer结构(2次)是大模型时代必考点
- 腾讯特色考点:
- 注重工业场景实现(如红包算法、特征工程)
- 强调模型调优实操(XGBoost参数/损失函数选择)
💡 面试策略建议
- 必掌握知识点:
- 二分法变种:求根号、局部最小值、旋转数组搜索
- Transformer:Self-Attention计算、位置编码、FFN层作用
- 模型调优:XGBoost特征重要性计算、正则化选择依据
- 差异化准备:
- 结合腾讯业务说明大模型落地经验(如混元微调)
- 准备可量化的项目成果(如PPO奖励设计提升效果%)
- 手撕代码重点:
- 高频题型:动态规划(跳跃游戏)、字符串处理(复原IP)
- 注意:红包算法需考虑随机分布公平性
🎯 面试辅助推荐
如果你在准备这些高频考点时,觉得内容多、记忆难、面试压力大,可以试试【登科及第】。
它可以 自动识别面试提问,智能生成参考答案,帮你高效查漏补缺,提升面试表现。