介绍
深度学习未兴起时,传统矩阵分解(Matrix Factorization)是推荐领域中的一种经典方法,基本做法是:
- 把用户和商品映射到隐向量空间,用向量表示。
- 通过内积,来表示向量之间的相似性。
作者认为,通过内积来表示向量相似性的做法过于简单,有时候会出现错误,限制了模型的泛化能力。文中的一个例子:
对于(a)中的交互矩阵,用sss表示用户之间的相似度,可以明显得看出
s23(0.66)>s12(0.5)>s13(0.4)s_{23}(0.66) > s_{12}(0.5) > s_{13}(0.4)s23(0.66)>s12(0.5)>s13(0.4)
这也体现在(b)中p1、p2、p3p_1、p_2、p_3p1、p2、p3的夹角大小。当你在(a)(a)(a)中把u4u_4u4考虑进去时,会得到:
s41(0.6)>s43(0.4)>s42(0.2)s_{41}(0.6) > s_{43}(0.4) > s_{42}(0.2)s41(0.6)>s