最新整理CVPR、ICCV、ECCV会议及地点

计算机视觉是人工智能重要子领域,近年来受关注。该领域有较浓厚的“会议情节”,CVPR、ICCV、ECCV并称CV领域三大顶会,其中ICCV和ECCV奇偶年交替召开,还介绍了各会议及地点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  计算机视觉(Computer Vision, CV)是人工智能领域的一个重要研究子领域。随着近年来CV学界研究成果在业界产生的巨大产业影响,计算机视觉受到越来越多的关注。
  同计算机其他研究领域一样,CV依然有着较浓厚的“会议情节”。

  • Computer Vision and Pattern Recognition (CVPR) — 每年一届
  • International Conference on Computer Vision (ICCV) — 两年一届
  • European Conference on Computer Vision (ECCV) — 两年一届

CVPR、ICCV、ECCV 并称CV领域的三大顶会,其中 ICCV 和 ECCV 奇偶年交替召开。


CVPR 会议及地点

会议地点
CVPR 2015Boston, MA, USA
CVPR 2016Las Vegas, NV, USA
CVPR 2017Honolulu, HI, USA
CVPR 2018Salt Lake City, UT, USA
CVPR 2019Long Beach, CA, USA
CVPR 2020Seattle, WA, USA
CVPR 2021线上召开

ICCV 会议及地点

会议地点
ICCV 2011Barcelona, Spain
ICCV 2013Sydney,NSW,Australia
ICCV 2015Santiago, Chile
ICCV 2017Venice, Italy
ICCV 2019Seoul, Korea (South)
ICCV 2021Montreal Canada

ECCV 会议及地点

会议地点
ECCV 2012Florence, Italy
ECCV 2014Zurich, Switzerland
ECCV 2016Amsterdam, Netherlands
ECCV 2018Munich, Germany
ECCV 2020Glasgow US
### 高光谱图像分类算法在顶级会议中的最新研究 #### ICCVCVPRECCV 上的高光谱图像分类进展 近年来,在计算机视觉领域的重要会议上,关于高光谱图像(HSI)分类的研究取得了显著进步。这些研究成果不仅推动了理论发展,还在实际应用方面展现了巨大潜力。 #### 数据融合技术的应用 多模态数据融合成为提高HSI分类性能的关键策略之一。例如,在自动驾驶场景下,为了可靠地检测不同距离的目标物体,现代LiDAR传感器能够覆盖数百米范围内的环境[^3]。这种远距离感知能力使得远处的小型目标物在图像中显得更小,而早期网络层提取到的信息对于识别这类小型目标尤为重要。这表明结合来自多个源的数据可以增强模型对复杂场景的理解力和适应性。 #### 新兴方法和技术趋势 一些新兴的方法专注于解决特定挑战,比如处理具有相似颜色分布的对象时的传统光学成像局限性。针对这一问题提出的多光谱最近点算法(MS-CPA),虽然在大多数情况下有效,但对于那些与背景或其他前景元素色彩接近的情况下表现不佳[^4]。因此,研究人员正在探索更多创新性的解决方案来克服此类难题。 尽管上述引用主要集中在其他主题上,但它们反映了当前学术界关注的方向——即如何利用先进的计算工具应对复杂的现实世界任务。值得注意的是,在ECCV 2020期间也有关于超分辨率重建的工作被提及,这部分工作间接支持了更高精度遥感影像获取的需求,从而促进了后续基于精细结构特征分析的任务展,如精准农业监测等领域内高光谱数据分析需求的增长[^1]。 然而,具体到ICCVCVPR以及ECCV这三个国际顶尖会议上直接讨论高光谱图像分类的文章列表并未在此提供完整的概述;建议查阅各次会议官方出版物以获得最权威的第一手资料。 ```python # Python代码示例:用于展示如何查询相关论文数据库(伪代码) def search_papers(keywords, conferences=['ICCV', 'CVPR', 'ECCV']): results = [] for conference in conferences: query = f"{conference} AND ({' OR '.join(keywords)})" papers = database.search(query) results.extend(papers) return sorted(results, key=lambda p: p['year'], reverse=True) keywords = ["hyperspectral", "image classification"] papers_found = search_papers(keywords) for paper in papers_found[:5]: print(f"- {paper.title}, published at {paper.conference}") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值