【用于电能质量分类的ML和DWT】智能电网中高级电能质量干扰鲁棒分类器的机器学习应用(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、电能质量分类的基本概念与挑战

1.1 分类标准与指标

1.2 扰动类型与时间特性

二、离散小波变换(DWT)在电能质量分析中的核心作用

2.1 DWT的工作原理

2.2 DWT在PQDs特征提取的优势

三、机器学习(ML)分类器的设计与应用案例

3.1 典型ML分类器性能对比

3.2 创新融合方法

四、智能电网对分类器的鲁棒性要求

五、未来挑战与发展方向

结论

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

一、电能质量分类的基本概念与挑战

电能质量(Power Quality, PQ)指公用电网供给用户交流电能的品质,其核心是电压、电流、频率等参数的稳定性。实际系统中,非线性负载、电力电子设备、分布式电源并网等因素导致电压偏差,形成电能质量问题。

1.1 分类标准与指标
  • 国际标准:IEC与IEEE定义了电能质量的核心参数,包括电压不平衡度、频率偏差、暂态过电压等。

  • 中国国家标准(关键指标限值):

    指标正常限值短时限值测量要求
    三相电压不平衡度≤2%≤4%PCC点测量,95%概率大值
    系统频率偏差±0.2Hz±0.5Hz*系统容量>3000MW可放宽
    暂态过电压(252kV)1.3–1.4 p.u.-按电压等级分级

1.2 扰动类型与时间特性

电能质量扰动(PQDs)按时间特性分为:

  • 短时扰动:电压暂降、暂升、中断(持续周期至分钟级)
  • 长时扰动:谐波、闪变、电压波动(持续数分钟以上)
    分类需结合时频域特征,传统方法(如傅里叶变换)难以捕捉非平稳信号,需引入多分辨率分析工具(如DWT)。

二、离散小波变换(DWT)在电能质量分析中的核心作用

DWT通过多尺度分解提取信号的时频局部特征,克服了傅里叶变换的全局局限性,尤其适合非稳态PQDs信号处理。

2.1 DWT的工作原理
  • 滤波器组实现:低通滤波器(提取近似系数 aiai​) + 高通滤波器(提取细节系数 didi​),公式为:

  • 噪声处理:噪声集中于高频细节系数(d1−d4d1​−d4​),通过阈值处理(硬/软阈值)滤除。
2.2 DWT在PQDs特征提取的优势
  1. 多分辨率分析(MRA)
    • 8级Db4小波分解可清晰定位扰动起止点(如电压暂降)。
    • 示例:d1−d4d1​−d4​ 系数有效检测暂态事件时域范围(见Fig.1)。
  2. 特征压缩与降维
    • 保留关键系数(如能量集中区域),降低数据维度。
  3. 平移不变性改进
    • 冗余DWT(RDWT)避免信号平移导致的分类误差,提升鲁棒性。

三、机器学习(ML)分类器的设计与应用案例

ML算法利用DWT提取的特征实现高精度分类,核心模型包括SVM、CNN、LSTM及集成方法。

3.1 典型ML分类器性能对比
方法准确率噪声鲁棒性优势来源
SVM + DWT特征97.92%20dB SNR有效计算效率高,适合小样本
CNN(二维灰度图输入)>98%自动特征提取,抗噪性强
LSTM(时序特征)97% (复合扰动)中等处理长序列依赖
LightGBM(多标签)>96%特征选择优化,抗噪声

3.2 创新融合方法
  • DWT+PSO-CNN:粒子群优化CNN超参数,分类准确率提升3–5%。
  • 迁移学习+ResNet:继承预训练权重,冻结部分层,增强模型泛化能力。
  • 多粒度特征融合:结合不同粒度特征空间,提升小样本分类效果。

四、智能电网对分类器的鲁棒性要求

智能电网环境复杂(高噪声、复合扰动),分类器需满足:

  1. 抗噪声能力
    • 在SNR≥20dB时准确率>95%。
    • 例:AFEN模块(通道注意力+频域增强)提升信噪比。
  2. 复合扰动识别
    • 多标签LightGBM可同时识别 Sag+Harmonic 等多类型扰动。
  3. 实时性与轻量化
    • 特征提取效率:直方图法耗时仅为小波熵的1/15。
    • 轻量模型(如1D-CNN+残差网络)参数少,适合嵌入式部署。

五、未来挑战与发展方向

  1. 特征提取优化
    • 小波基选择(Db4 vs. Symlets)与分解层数对性能影响显著。
  2. 深度学习深化
    • 多尺度Transformer融合时序二维变换,提升特征表达能力。
  3. 边缘计算适配
    • 压缩DWT系数(保留<5%关键系数)实现实时处理。
  4. 跨场景泛化
    • 迁移学习解决训练数据不足问题。

结论

DWT与ML的结合是智能电网电能质量分类的核心技术路径:

  • DWT 提供时频局部化特征,尤其擅长瞬态扰动检测与降噪;
  • ML分类器(如SVM、CNN、LightGBM)利用特征实现高精度、鲁棒分类;
  • 未来需聚焦特征融合优化(如多粒度空间)、轻量化部署噪声环境泛化,以满足智能电网实时监测需求。

📚2 运行结果

 

 

 

 

部分代码:

[c1,c2] = dwt(Swell_harmonic,'dmey');% coeficientes discretos
en1 = wentropy(Swell_harmonic,'shannon');% entropia do sinal original
en2 = wentropy(c1,'shannon');% entropia dos coeficiente aproximados (approximation coefficients)
en3 = wentropy(c2,'shannon');% entropia dos coeficientes detalhados (detail coefficients)
% coeff = cwt(vwave); %coeficientes
energy = sqrt(sum(abs(c2).^2,2)); %energia dos coeficientes continuos
x1= mean (energy); %m茅dia da energia
percentage = 100*energy/sum(energy);%energia em porcentagem
[maxpercent,maxScaleIDX] = max(percentage);%maxima porcentagem
r=thd(Swell_harmonic);
T9(i,:)={en1,en2,en3,x1,maxpercent,r,"swell_harmonic"};

[c1,c2] = dwt(Flicker,'dmey');% coeficientes discretos
en1 = wentropy(Flicker,'shannon');% entropia do sinal original
en2 = wentropy(c1,'shannon');% entropia dos coeficiente aproximados (approximation coefficients)
en3 = wentropy(c2,'shannon');% entropia dos coeficientes detalhados (detail coefficients)
% coeff = cwt(vwave); %coeficientes
energy = sqrt(sum(abs(c2).^2,2)); %energia dos coeficientes continuos
x1= mean (energy); %m茅dia da energia
percentage = 100*energy/sum(energy);%energia em porcentage

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]王继东,徐志林.基于DWT和极限学习机的电能质量扰动分类方法:CN201910819003.0[P].CN110610203A[2023-08-07].

[2]李令冬,朱明星,黄炜.智能电网的发展给电能质量研究与产业带来的机遇和挑战[C]//首届全国电能质量学术会议暨电能质量行业发展论坛.中国电源学会, 2009.

[3]Machine Learning Applications for a Robust Classifier of Advanced Power Quality Disturbances in Smart Grid", by Gabriel C. S. Almeida, at the Federal University of Itajubá.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值