💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
一、电能质量分类的基本概念与挑战
电能质量(Power Quality, PQ)指公用电网供给用户交流电能的品质,其核心是电压、电流、频率等参数的稳定性。实际系统中,非线性负载、电力电子设备、分布式电源并网等因素导致电压偏差,形成电能质量问题。
1.1 分类标准与指标
-
国际标准:IEC与IEEE定义了电能质量的核心参数,包括电压不平衡度、频率偏差、暂态过电压等。
-
中国国家标准(关键指标限值):
指标 正常限值 短时限值 测量要求 三相电压不平衡度 ≤2% ≤4% PCC点测量,95%概率大值 系统频率偏差 ±0.2Hz ±0.5Hz* 系统容量>3000MW可放宽 暂态过电压(252kV) 1.3–1.4 p.u. - 按电压等级分级
1.2 扰动类型与时间特性
电能质量扰动(PQDs)按时间特性分为:
- 短时扰动:电压暂降、暂升、中断(持续周期至分钟级)
- 长时扰动:谐波、闪变、电压波动(持续数分钟以上)
分类需结合时频域特征,传统方法(如傅里叶变换)难以捕捉非平稳信号,需引入多分辨率分析工具(如DWT)。
二、离散小波变换(DWT)在电能质量分析中的核心作用
DWT通过多尺度分解提取信号的时频局部特征,克服了傅里叶变换的全局局限性,尤其适合非稳态PQDs信号处理。
2.1 DWT的工作原理
- 滤波器组实现:低通滤波器(提取近似系数 aiai) + 高通滤波器(提取细节系数 didi),公式为:
- 噪声处理:噪声集中于高频细节系数(d1−d4d1−d4),通过阈值处理(硬/软阈值)滤除。
2.2 DWT在PQDs特征提取的优势
- 多分辨率分析(MRA):
- 8级Db4小波分解可清晰定位扰动起止点(如电压暂降)。
- 示例:d1−d4d1−d4 系数有效检测暂态事件时域范围(见Fig.1)。
- 特征压缩与降维:
- 保留关键系数(如能量集中区域),降低数据维度。
- 平移不变性改进:
- 冗余DWT(RDWT)避免信号平移导致的分类误差,提升鲁棒性。
三、机器学习(ML)分类器的设计与应用案例
ML算法利用DWT提取的特征实现高精度分类,核心模型包括SVM、CNN、LSTM及集成方法。
3.1 典型ML分类器性能对比
方法 | 准确率 | 噪声鲁棒性 | 优势 | 来源 |
---|---|---|---|---|
SVM + DWT特征 | 97.92% | 20dB SNR有效 | 计算效率高,适合小样本 | |
CNN(二维灰度图输入) | >98% | 强 | 自动特征提取,抗噪性强 | |
LSTM(时序特征) | 97% (复合扰动) | 中等 | 处理长序列依赖 | |
LightGBM(多标签) | >96% | 高 | 特征选择优化,抗噪声 |
3.2 创新融合方法
- DWT+PSO-CNN:粒子群优化CNN超参数,分类准确率提升3–5%。
- 迁移学习+ResNet:继承预训练权重,冻结部分层,增强模型泛化能力。
- 多粒度特征融合:结合不同粒度特征空间,提升小样本分类效果。
四、智能电网对分类器的鲁棒性要求
智能电网环境复杂(高噪声、复合扰动),分类器需满足:
- 抗噪声能力:
- 在SNR≥20dB时准确率>95%。
- 例:AFEN模块(通道注意力+频域增强)提升信噪比。
- 复合扰动识别:
- 多标签LightGBM可同时识别 Sag+Harmonic 等多类型扰动。
- 实时性与轻量化:
- 特征提取效率:直方图法耗时仅为小波熵的1/15。
- 轻量模型(如1D-CNN+残差网络)参数少,适合嵌入式部署。
五、未来挑战与发展方向
- 特征提取优化:
- 小波基选择(Db4 vs. Symlets)与分解层数对性能影响显著。
- 深度学习深化:
- 多尺度Transformer融合时序二维变换,提升特征表达能力。
- 边缘计算适配:
- 压缩DWT系数(保留<5%关键系数)实现实时处理。
- 跨场景泛化:
- 迁移学习解决训练数据不足问题。
结论
DWT与ML的结合是智能电网电能质量分类的核心技术路径:
- DWT 提供时频局部化特征,尤其擅长瞬态扰动检测与降噪;
- ML分类器(如SVM、CNN、LightGBM)利用特征实现高精度、鲁棒分类;
- 未来需聚焦特征融合优化(如多粒度空间)、轻量化部署及噪声环境泛化,以满足智能电网实时监测需求。
📚2 运行结果
部分代码:
[c1,c2] = dwt(Swell_harmonic,'dmey');% coeficientes discretos
en1 = wentropy(Swell_harmonic,'shannon');% entropia do sinal original
en2 = wentropy(c1,'shannon');% entropia dos coeficiente aproximados (approximation coefficients)
en3 = wentropy(c2,'shannon');% entropia dos coeficientes detalhados (detail coefficients)
% coeff = cwt(vwave); %coeficientes
energy = sqrt(sum(abs(c2).^2,2)); %energia dos coeficientes continuos
x1= mean (energy); %m茅dia da energia
percentage = 100*energy/sum(energy);%energia em porcentagem
[maxpercent,maxScaleIDX] = max(percentage);%maxima porcentagem
r=thd(Swell_harmonic);
T9(i,:)={en1,en2,en3,x1,maxpercent,r,"swell_harmonic"};
[c1,c2] = dwt(Flicker,'dmey');% coeficientes discretos
en1 = wentropy(Flicker,'shannon');% entropia do sinal original
en2 = wentropy(c1,'shannon');% entropia dos coeficiente aproximados (approximation coefficients)
en3 = wentropy(c2,'shannon');% entropia dos coeficientes detalhados (detail coefficients)
% coeff = cwt(vwave); %coeficientes
energy = sqrt(sum(abs(c2).^2,2)); %energia dos coeficientes continuos
x1= mean (energy); %m茅dia da energia
percentage = 100*energy/sum(energy);%energia em porcentage
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]王继东,徐志林.基于DWT和极限学习机的电能质量扰动分类方法:CN201910819003.0[P].CN110610203A[2023-08-07].
[2]李令冬,朱明星,黄炜.智能电网的发展给电能质量研究与产业带来的机遇和挑战[C]//首届全国电能质量学术会议暨电能质量行业发展论坛.中国电源学会, 2009.
[3]Machine Learning Applications for a Robust Classifier of Advanced Power Quality Disturbances in Smart Grid", by Gabriel C. S. Almeida, at the Federal University of Itajubá.