【剑指 Offer 68 - I & II . 二叉搜索树/二叉树的最近公共祖先】

本文介绍了两种方法解决二叉搜索树中寻找两个指定节点的最近公共祖先问题。第一种是迭代遍历,从根节点开始,根据节点值与p、q的大小关系更新祖先节点;第二种是递归方式,通过先序遍历,当找到p或q时回溯判断最近公共祖先。两种方法的时间复杂度均为O(n),空间复杂度分别为O(1)和O(n)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/er-cha-sou-suo-shu-de-zui-jin-gong-gong-zu-xian-lcof/solution/

-给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

  • 最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大一个节点也可以是它自己的祖先)。”

示例:

  • 示例1
  • 例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

在这里插入图片描述


输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6 
解释: 节点 2 和节点 8 的最近公共祖先是 6
  • 示例2

输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

  • 提示
     所有节点的值都是唯一的。
	 p、q 为不同节点且均存在于给定的二叉搜索树中。

解析思路1:迭代遍历

  • 参考官方解析.

  • 由条件知道:

  • ① 树为 二叉搜索树:所有比根节点数值小的节点都在根的左子树上;比根节点数值大的都在根节点右子树上。

  • ② 树的所有节点的值都是 唯一 的。

  • 从根节点开始遍历:

  • 若当前节点的值大于 p 和 q 的值,说明 p 和 q 应该在当前节点的左子树,因此将当前节点移动到它的左子节点;

  • 若当前节点的值小于 p 和 q 的值,说明 p 和 q 应该在当前节点的右子树,因此将当前节点移动到它的右子节点;

  • 当前节点的值不满足上述两条要求,那么说明当前节点就是**「分岔点」**。此时,p 和 q 要么在当前节点的不同的子树中,要么其中一个就是当前节点。

如图:
在这里插入图片描述
在这里插入图片描述

代码(cpp)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        auto ancestor = root;
        while(true){
            if (p->val < ancestor->val && q->val < ancestor->val){
                ancestor = ancestor->left;
            }
            else if (p->val > ancestor->val && q->val > ancestor->val){
                ancestor = ancestor->right;
            }
            else {break;}
        }
        return ancestor;
    }
};

复杂度分析:

  • 时间复杂度:O(n),其中 n 是给定的二叉搜索树中的节点个数。

  • 空间复杂度:O(1), 使用常数大小的额外空间。

  • 代码优化:



代码(python3)


解析思路2:递归

代码(cpp)

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        auto ancestor = root;
        while(true){
            if (p->val < ancestor->val && q->val < ancestor->val){
                return(lowestCommonAncestor(ancestor->left, p,  q));
            }
            else if (p->val > ancestor->val && q->val > ancestor->val){
                return(lowestCommonAncestor(ancestor->right,  p,  q));
            }
            else {break;}
        }
        return ancestor;
    }
};

复杂度分析:

  • 时间复杂度:O(n),其中 n 是给定的二叉搜索树中的节点个数,最大为 N(退化为链表)。
  • 空间复杂度:O(n), 最差情况下,即树退化为链表时,递归深度达到树的层数 N 。

代码(python3)


剑指 Offer 68 - II. 二叉树的最近公共祖先

  • 来源:力扣(LeetCode)
  • 链接:https://leetcode-cn.com/problems/er-cha-shu-de-zui-jin-gong-gong-zu-xian-lcof/
  • 理解祖先的定义:

在这里插入图片描述

  • 若 root是 p, q 的 最近公共祖先 ,则只可能为以下情况之一:
    -> 在这里插入图片描述

  • 通过递归对二叉树进行先序遍历,当遇到节点 p 或 q 时返回从底至顶回溯,当节点 p, q 在节点 root 的异侧时,节点 root 即为最近公共祖先,则向上返回 root 。

  • 参考图示:

在这里插入图片描述

代码(cpp)

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root == NULL || root == p || root == q) return root; // 当 left 和 right 同时不为空 :说明 p, q 分列在 root 的 异侧 (分别在 左 / 右子树),因此 root 为最近公共祖先,返回 root ;
        auto left = lowestCommonAncestor(root->left,p,q);  // 开启递归
        auto right = lowestCommonAncestor(root->right,p,q);
        if (left == NULL && right == NULL) return NULL;  // 当 left 和 right 同时为空 :说明 root 的左 / 右子树中都不包含 p,q,返回 null ;
        if (left == NULL) return right;// 当 left 为空 ,right 不为空 :p,q 都不在root 的左子树中,直接返回right 进行判断
        if (right== NULL) return left; // 同上
        return root;  // (left != null and right != null)
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值