cs231n_反向传播求导篇

本文探讨了深度学习中矩阵除法的原理,特别是矩阵除以矩阵的情况,并以对W求导为例解释了反向传播的过程。在卷积求导中,描述了如何将dout的每个元素对w和x的偏导数重叠,形成最终的梯度。还提到了向量除法的特殊情况,通常用雅克比矩阵来表示两个向量的除法关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们已经知道基本的标量除以矩阵(或向量),矩阵(或向量)除以标量,以及稍微复杂一点的向量除向量 [1] [ 1 ] ,行向量除以向量除以矩阵,矩阵除以向量的方法,那么矩阵除以矩阵呢?例如:

XN×DWD×C=fN×C
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值