【Python新手入门教程】一分钟看完搭建Python开发环境,让你马上就会!!!
引言:
Python凭借其简洁优雅的语法和强大的生态支持,已经成为现代软件开发的核心语言,在Web开发、数据分析、人工智能及自动化等领域大放异彩。其跨平台特性和快速原型开发能力,更是让它成为开发者不可或缺的工具。
良好的开发环境是高效编程的第一步,它直接影响代码质量、调试效率和团队协作。合理配置工具链(包括IDE、版本控制系统和依赖管理工具)不仅能降低学习门槛,更能确保项目从开发到部署的无缝衔接。
回想起初学Python时踩过的坑:版本冲突、缩进错误、中英文符号混淆...光是搭建开发环境就耗费了大量精力。特别是多版本Python共存时,既要处理环境变量,又要担心磁盘空间,着实让人头疼。但这些挫折丝毫未减Python的魅力,反而让我更加坚定地选择了它。
本文专为初学者和中级开发者打造,摒弃传统的直接安装Python方式,也不涉及复杂的conda虚拟环境配置,而是采用新一代工具uv来快速搭建Python开发环境。无论你是刚入门的新手,还是希望优化工作流的老手,都能从中获得实用价值。
为什么选择uv?
这个工具堪称Python开发神器:不仅能管理Python版本,还内置了高效的包管理功能。最令人惊喜的是,它彻底解决了pip换源的烦恼,安装速度比传统pip快数倍,几乎秒速完成。此外,它占用空间小,项目结构清晰完整
二、基础环境搭建
1. Windows环境搭建
在Windows下使用uv搭建环境非常简单,仅需要打开powershell
,运行以下命令即可
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
运行完成后,执行uv -V
,不报错就是安装成功了,如果你安装失败了,请在评论区或者私信我留言
2. Mac和Linux系统搭建
在Mac和Linux系统下安装uv也是十分容易,基本上仅需一条命令
curl -LsSf https://astral.sh/uv/install.sh | sh
需要注意的是,如果你报错了,请安装curl
工具,尽管这个工具一般系统都是自带的,但是任然存在部分精简系统没有这个工具。
验证是否安装成功的方法参考上面第一步:【1. Windows环境搭建】
3. 安装代码编辑工具(VSCode、PyCharm……)
代码编辑工具我个人是无脑推荐使用 VSCode
,当然市面上的PyCharm
也是非常好用的,但是实际上通过我的使用来看 VSCode
更加简单、轻量级,新手入门主要是关注代码就行,而且免费。安装vscode仅需一行命令就可以。
winget install Microsoft.VisualStudioCode
安装完成后打开vscode仅需安装一个Python Extension Pack
插件就可以开始编程了。
三、uv工具的基本用法
官方给出了uv工具基本用法, 如下代码:
uv init example
cd example
uv add ruff
uv run ruff check
uv lock
uv sync
接下来我将介绍这几个命令是做什么用的
1. 初始化项目
uv创建一个新的项目非常简单粗暴,仅需要创建一个目录,然后进去执行
uv init
或者不创建文件夹也行,直接运行
uv init example
其中example
就是给你创建的项目文件夹。(没错,这就完事了)
2. 添加依赖
添加依赖也是只有一条命令,非常好记,就是add
,比如安装ruff
代码检查工具
uv add ruff
运行效果大概是下面这样(下面是我的运行效果图片,仅供参考)
基本上秒完成,非常快,不用换源,建议python开发者都换到uv上来。
3. 代码检查
代码检查本质上是不太需要的,毕竟python没有那么严格,但是为了保证你写的代码的正确性,建议检查代码。这部分内容的基于上面安装的ruff
的,安装了这个包才可以进行代码检查。直接执行以下命令
uv run ruff check
如果你的代码没有问题,则会显示以下效果
& uv run ruff check
All checks passed!
否则就会提示你哪里语法有问题需要修改,直接帮新手完成了语法检查的步骤。
4. 锁定依赖
锁定依赖没有什么说的,其实就是将你的依赖锁定了,以后安装就只安装这个版本的依赖,以防依赖更新了你的程序就跑不起来了,直接执行下面的语句即可。
uv lock
5. 更新依赖
更新依赖,见名知意,就是更新你项目的依赖,如果你进行了依赖改动(手动),那么就需要更新依赖,也是一条命令
uv sync
6. 运行代码
基本的运行代码很简单,只要用run加脚本名就可以了,至于更复杂的可以去官方文档研究研究,现在的mcp基本上都是用的uv来做的,就是因为其运行代码很方便,也是一条命令
uv run main.py
四、uv的高级用法
1. 虚拟环境管理 (Virtual Environments)
uv 提供高效的虚拟环境管理功能,支持多种高级配置:
创建虚拟环境:
# 创建默认虚拟环境
uv venv .venv
# 指定 Python 版本
uv venv --python 3.11 .venv
环境激活
# Unix 系统
source .venv/bin/activate
# Windows 系统
.\.venv\Scripts\activate
环境管理
uv python install: 安装python版本
uv python list: 查看可用的python版本
uv python find: 查找一个已安装的python版本
uv python pin: 将当前项目固定使用特定的Python版本。
uv python uninstall: 卸载一个python版本
高级特性
- 轻量级环境:比传统 virtualenv 快 10 倍
- 跨平台兼容:Windows/macOS/Linux 一致体验
- 环境继承:
--system-site-packages
复用系统包 - 符号链接:
--symlinks
减少磁盘占用
2. 脚本管理 (Scripts)
uv 支持在 pyproject.toml
中定义和管理项目脚本:
定义脚本
# pyproject.toml
[tool.uv.scripts]
# 简单命令
start = "python main.py"
test = "pytest -v"
# 多命令序列
deploy = [
"uv pip compile requirements.in -o requirements.txt",
"uv pip sync requirements.txt",
"gunicorn app:app"
]
# 带环境变量
migrate = { cmd = "alembic upgrade head", env = { "DB_URL" = "postgres://user:pass@localhost/db" }}
# 平台特定命令
serve = { windows = "waitress-serve --port=8000 app:app", unix = "gunicorn app:app" }
运行脚本
# 运行单个脚本
uv run start
# 带参数传递
uv run test -- -x # 传递给 pytest: pytest -v -x
# 运行多命令脚本
uv run deploy
# 预定义钩子
uv run pre-commit # 自动运行 pre-commit 钩子
高级特性
- 参数传递:支持向脚本传递额外参数
- 环境隔离:每个脚本在独立环境中运行
- 依赖管理:自动安装脚本所需依赖
- 并行执行:
uv run --parallel task1 task2
总结
本文介绍了如何使用uv工具快速搭建Python开发环境,相比传统方式能有效避免新手在学习过程中常走的弯路。文中详细阐述了uv的优势特性、它能解决的实际问题,以及基础使用方法。
对于Python开发者而言,无论经验深浅,我都推荐使用uv来管理Python项目,它能显著提升开发效率和体验。