头歌实训 机器学习——绪论

第一关:什么是机器学习

下面哪种方法属于机器学习?(BC)

A、在猫狗分类问题中,先将猫与狗的特点总结出来,再告诉机器,如果符合猫的特点,则判定为猫,如果符合狗的特点,则判定为狗。

B、将大量名画的真品与赝品输入计算机,让计算机自己从数据中学习出一个模型用来判断是真品还是赝品。

C、让计算机通过对以往的房价数据进行分析,预测未来房价走势。

D、通过人为编写好代码,符合条件则判定为人脸,否则不是人脸,从而制作出人脸识别系统

第二关:机器学习的常见术语 


以下是我们的一份数据集,则x32​表示的是?( B ) 

A、青绿

B、硬挺

C、清脆

D、浊响

第三关:机器学习的主要任务


1、我们现在手头上有大量的猫与狗的图片,我现在想训练出一个模型,能够区别出这张图片是猫还是狗,这是一个什么问题?( B ) 

A、回归

B、分类

C、聚类

2、我们现在手头上有大量的动物的图片,为了方便处理,我们想让同一种动物的图片放到同一个文件夹,这是一个什么问题?( AD )

A、聚类

B、回归

C、分类

D、无监督学习

3、在无人驾驶时,希望程序能够根据路况决策汽车的方向盘的旋转角度,那么该任务是?( B )

A、分类

B、回归

C、聚类

D、降维

### P 实训机器学习的相关资料 (EduCoder)是一个专注于实践教学的在线平台,提供了丰富的编程项目和实验资源。对于机器学习领域,可以通过该平台获取一些基础到高级的课程内容以及实际操作案例。 #### 1. **常用算法介绍** 在平台上可能涉及的机器学习算法包括但不限于以下几种: - 基于传统计算机视觉技术的人脸检测方法,例如Haar级联分类器[^1]。 - 面部特征提取的经典算法LBPH(Local Binary Patterns Histograms)[^1]。 - 利用深度学习框架实现更精确的目标识别,比如OpenCV中的Dnn模块、FaceNet等预训练模型。 #### 2. **Python代码实现指导** 为了能够顺利开展基于Python语言的机器学习项目,在开始之前需要安装必要的库文件。这一步骤通常涉及到NumPy, Pandas, Scikit-Learn以及其他特定用途的扩展包[^2]。下面展示了一个简单的例子来说明如何利用已有的预处理函数完成数据转换: ```python from sklearn.preprocessing import StandardScaler import numpy as np def preprocess_pipeline(): scaler = StandardScaler() return lambda data: scaler.fit_transform(data) train_data = np.array([[1., 2.], [3., 4.]]) preprocess_pipeline = preprocess_pipeline() X_train = preprocess_pipeline(train_data) print(X_train) ``` 此段脚本展示了标准化缩放的过程,并最终得到适合进一步建模使用的数值型输入特性矩阵`X_train`。 #### 3. **机器学习基本概念解析** 机器学习的核心在于让计算设备具备自主发现规律的能力。具体而言,当面对一组未经标注的数据集时,系统会先对其进行初步剖析,接着探索其中隐藏的信息结构诸如几何形态、尺寸比例或者色彩分布等方面的特点[^3]。随后依据所得结论执行相应的判断任务——无论是分类还是聚类等问题均适用于此逻辑链条之上[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值