任务描述
本关任务:使用 HBase 隔离性操作完成要求的数据更新操作。
相关知识
为了完成本关任务,你需要掌握:
1.事务隔离机制的原因;
2.事务的隔离级别;
3.隔离性操作。
隔离机制的原因
隔离机制的原因如下所述:
事务 a 更新的过程中允许事务 b 进行读取,就有可能导致脏读,什么是脏读,脏读就是指当一个事务正在访问数据,并且对数据进行了修改,而这种修改还没有提交到数据库中,这时,另外一个事务也访问这个数据,然后使用了这个数据。因为这个数据是还没有提交的数据,那么另外一个事务读到的这个数据是脏数据,依据脏数据所做的操作可能是不正确的,这就是事务的最低隔离机制,ISOLATION_READ_UNCOMMITTED,读未提交,允许我们读取其他事务未提交的数据,只有事务在更新某数据的瞬间(就是发生更新的瞬间),对其加行级共享锁,直到事务结束才释放。
事物并发引起:
脏读(dirty):事物 a 读取事物 b 的更新数据,然后 b 回滚操作,那么 a 读到的是脏数据。
不可重复读(unrepeatable read):
两次查询结果不一样,幻读(phantom read)同样的事物操作,前后两个时间段内执行同一个数据项的读取,可能出现不一致的结果。
事务的隔离级别
事务的隔离级别有如下几点:
读未提交(Read uncommitted)
所有事务都可以看到其他未提交事务的执行结果。本隔离级别是最低的隔离级别,虽然拥有超高的并发处理能力及很低的系统开销,但很少用于实际应用。因为采用这种隔离级别只能防止更新丢失问题,不能解决脏读,不可重复读及幻读问题。
读已提交(Read committed)
满足了隔离的简单定义:一个事务只能看见已经提交事务所做的改变。这种隔离级别可以防止脏读问题,但会出现不可重复读及幻读问题。
可重复读(Repeatable read)
确保同一事务的多个实例在并发读取数据时,会看到同样的数据行。这种隔离级别可以防止除幻读外的其他问题。
串行化(Serializable )
这是最高的隔离级别,它通过强制事务排序,使之不可能相互冲突,从而解决幻读、第二类更新丢失问题。在这个级别,可以解决上面提到的所有并发问题,但可能导致大量的超时现象和锁竞争,通常数据库不会用这个隔离级别。
隔离性操作
HBase 支持两种事务隔离级别,类org.apache.hadoop.hbase.client.IsolationLeve里面定义了这两种隔离级别:
Read_uncommitted
Read_committed
HBase 事务支持示例如下所示:
import com.mt.hbase.connection.HBaseConnectionFactory;
import org.apache.hadoop.hbase.Cell;
import org.apache.hadoop.hbase.CellUtil;
import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.*;
import org.apache.hadoop.hbase.util.Bytes;
import java.util.ArrayList;
import java.util.List;
public class HbaseTransactionD