头歌 Pandas的Series对象

任务描述
本关任务:使用任意一个方法创建一个Series对象。

相关知识
Pandas的Series对象是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维数组,可以用一个数组创建Series对象。

In: data = pd.Series([0.25, 0.5, 0.75, 1.0]) 
In: data 
Out: 0 0.25 
     1 0.50 
     2 0.75 
     3 1.00 
     dtype: float64
从上面的结果发现Series对象将一组数据和一组索引绑定在一起,我们可以通过values属性和index属性获取数据,values返回的结果与Numpy数组类似,index返回结果是一个类型为pd.Index的类数组对象。

In: data.values 
Out: array([ 0.25, 0.5 , 0.75, 1. ])
In: data.index 
Out: RangeIndex(start=0, stop=4, step=1)
Series和Numpy数组一样,数据可以通过Python的中括号索引标签获取。而且比Numpy数组更加通用、灵活。

In: data[1]
Out: 0.5
In: data[1:3]
Out: 1 0.50
     2 0.75
     dtype: float64
创建Series对象
创建Pandas的Series对象的方法:

pd.Series(data,index=index)

其中,index是一个可选参数,默认为np.arange(n),data参数支持多种数据类型。

Series是通用的Numpy数组
Series对象和一维Numpy数组基本可以等价交换,但两者间的本质差异其实是索引:NumPy数组通过隐式定义的整数索引获取数值,而Pandas的Series对象用一种显式定义的索引与数值关联。
显式索引的定义让Series对象拥有了更强的能力。例如,索引不再仅仅是整数,还可以是任意想要的类型。

In: data = pd.Series([0.25, 0.5, 0.75, 1.0], index=['a', 'b', 'c', 'd'])
Out: a 0.25 
     b 0.50
     c 0.75 
     d 1.00 
     dtype: float64
In: data["b"]
Out: 0.5
Series是特殊的字典
你可以把Pandas的Series对象看成一种特殊的 Python 字典。字典是一种将任意键映射到一组任意值的数据结构,而Series对象其实是一种将类型键映射到一组类型值的数据结构。我们可以直接用 Python 的字典创建一个Series对象,让Series对象与字典的类比更加清晰。

In: population_dict = {'California': 38332521,'Texas': 26448193, 'New York': 19651127, 'Florida': 19552860, 'Illinois': 12882135} 
In: population = pd.Series(population_dict) 
In: population
Out: California 38332521 
     Florida    19552860 
     Illinois   12882135 
     New York   19651127 
     Texas      26448193 
     dtype: int64
用字典创建 Series对象时,其索引默认按照顺序排列。典型的字典数值获取方式仍然有效,而且还支持数组形式的切片操作等。

In: population['California'] 
Out: 38332521
In: population['California':'Illinois'] 
Out: California 38332521 
     Florida    19552860 
     Illinois   12882135 
     dtype: int64
编程要求
本关的编程任务是补全右侧上部代码编辑区内的相应代码,创建一个Series对象,并输出。

具体要求请参见后续测试样例。
请先仔细阅读右侧上部代码编辑区内给出的代码框架,再开始你的编程工作!

测试说明
平台会对你编写的代码进行测试,对比你输出的数值与实际正确的数值,只有所有数据全部计算正确才能进入下一关。

测试输入中的第一行为Series对象中的列索引,第二行为Series对象中每一行的值。

测试输入:
a,b,c,d,e,f
6,5,4,2,1,3

预期输出:

a    6
b    5
c    4
d    2
e    1
f    3
dtype: object
开始你的任务吧,祝你成功!

import pandas as pd

a = input()   # 输入的是一个字符串,详细数据可查看测试集
b = input()

# 使用任意方法创建一个Series对象,并输出
#********* Begin **********#
index = a.split(',')
values = [str(i) for i in b.split(',')]  # 将值转换为字符串类型
s = pd.Series(values, index=index)
print(s)
#********* End **********#

 

### 关于 Pandas Series 对象的信息 #### 创建 Series 对象 创建 `Series` 对象可以通过传递数据和可选的索引来完成。这允许从多种数据源构建 `Series`,如列表、字典或标量值。 ```python import pandas as pd # 使用列表作为数据输入 data_list = [1, 2, 3, 4] series_from_list = pd.Series(data=data_list) # 使用字典作为数据输入 data_dict = {'a': 1, 'b': 2} series_from_dict = pd.Series(data=data_dict) # 使用标量值作为数据输入 scalar_value = 5 series_from_scalar = pd.Series(scalar_value, index=[0, 1]) ``` 上述代码展示了如何通过不同类型的输入来创建 `Series` 对象[^3]。 #### 检查 Series 是否含有缺失值 为了验证 `Series` 中是否有任何缺失的数据点(NaN),可以利用内置属性 `hasnans` 来快速判断: ```python example_series_with_nan = pd.Series([1, None, 3]) if example_series_with_nan.hasnans: print("The series contains at least one NaN value.") else: print("No NaN values found in the series.") ``` 这段代码会输出提示信息告知是否检测到 NaN 值的存在[^2]。 #### 访问 DataFrame 的列作为 Series 当处理更复杂的表格结构——`DataFrame`时,每一列实际上都是一个 `Series` 实例。因此可以直接访问这些列并将其视为独立的 `Series` 进行操作。 ```python df_example = pd.DataFrame({ 'A': ['foo', 'bar'], 'B': [1, 2], }) column_as_series = df_example['A'] print(column_as_series) ``` 此部分展示了一个简单的例子,其中定义了一个包含两列 A 和 B 的 `DataFrame` 并提取了一列作为一个单独的 `Series`[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

敲代码的苦13

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值