任务描述
本关任务:使用任意一个方法创建一个Series对象。
相关知识
Pandas的Series对象是能够保存任何类型的数据(整数,字符串,浮点数,Python对象等)的一维数组,可以用一个数组创建Series对象。
In: data = pd.Series([0.25, 0.5, 0.75, 1.0])
In: data
Out: 0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64
从上面的结果发现Series对象将一组数据和一组索引绑定在一起,我们可以通过values属性和index属性获取数据,values返回的结果与Numpy数组类似,index返回结果是一个类型为pd.Index的类数组对象。
In: data.values
Out: array([ 0.25, 0.5 , 0.75, 1. ])
In: data.index
Out: RangeIndex(start=0, stop=4, step=1)
Series和Numpy数组一样,数据可以通过Python的中括号索引标签获取。而且比Numpy数组更加通用、灵活。
In: data[1]
Out: 0.5
In: data[1:3]
Out: 1 0.50
2 0.75
dtype: float64
创建Series对象
创建Pandas的Series对象的方法:
pd.Series(data,index=index)
其中,index是一个可选参数,默认为np.arange(n),data参数支持多种数据类型。
Series是通用的Numpy数组
Series对象和一维Numpy数组基本可以等价交换,但两者间的本质差异其实是索引:NumPy数组通过隐式定义的整数索引获取数值,而Pandas的Series对象用一种显式定义的索引与数值关联。
显式索引的定义让Series对象拥有了更强的能力。例如,索引不再仅仅是整数,还可以是任意想要的类型。
In: data = pd.Series([0.25, 0.5, 0.75, 1.0], index=['a', 'b', 'c', 'd'])
Out: a 0.25
b 0.50
c 0.75
d 1.00
dtype: float64
In: data["b"]
Out: 0.5
Series是特殊的字典
你可以把Pandas的Series对象看成一种特殊的 Python 字典。字典是一种将任意键映射到一组任意值的数据结构,而Series对象其实是一种将类型键映射到一组类型值的数据结构。我们可以直接用 Python 的字典创建一个Series对象,让Series对象与字典的类比更加清晰。
In: population_dict = {'California': 38332521,'Texas': 26448193, 'New York': 19651127, 'Florida': 19552860, 'Illinois': 12882135}
In: population = pd.Series(population_dict)
In: population
Out: California 38332521
Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193
dtype: int64
用字典创建 Series对象时,其索引默认按照顺序排列。典型的字典数值获取方式仍然有效,而且还支持数组形式的切片操作等。
In: population['California']
Out: 38332521
In: population['California':'Illinois']
Out: California 38332521
Florida 19552860
Illinois 12882135
dtype: int64
编程要求
本关的编程任务是补全右侧上部代码编辑区内的相应代码,创建一个Series对象,并输出。
具体要求请参见后续测试样例。
请先仔细阅读右侧上部代码编辑区内给出的代码框架,再开始你的编程工作!
测试说明
平台会对你编写的代码进行测试,对比你输出的数值与实际正确的数值,只有所有数据全部计算正确才能进入下一关。
测试输入中的第一行为Series对象中的列索引,第二行为Series对象中每一行的值。
测试输入:
a,b,c,d,e,f
6,5,4,2,1,3
预期输出:
a 6
b 5
c 4
d 2
e 1
f 3
dtype: object
开始你的任务吧,祝你成功!
import pandas as pd
a = input() # 输入的是一个字符串,详细数据可查看测试集
b = input()
# 使用任意方法创建一个Series对象,并输出
#********* Begin **********#
index = a.split(',')
values = [str(i) for i in b.split(',')] # 将值转换为字符串类型
s = pd.Series(values, index=index)
print(s)
#********* End **********#