系列文章目录
Pytorch基础篇
01-PyTorch新手必看:张量是什么?5 分钟教你快速创建张量!
02-张量运算真简单!PyTorch 数值计算操作完全指南
03-Numpy 还是 PyTorch?张量与 Numpy 的神奇转换技巧
04-揭秘数据处理神器:PyTorch 张量拼接与拆分实用技巧
05-深度学习从索引开始:PyTorch 张量索引与切片最全解析
06-张量形状任意改!PyTorch reshape、transpose 操作超详细教程
07-深入解读 PyTorch 张量运算:6 大核心函数全面解析,代码示例一步到位!
08-自动微分到底有多强?PyTorch 自动求导机制深度解析
Pytorch实战篇
09-从零手写线性回归模型:PyTorch 实现深度学习入门教程
10-PyTorch 框架实现线性回归:从数据预处理到模型训练全流程
11-PyTorch 框架实现逻辑回归:从数据预处理到模型训练全流程
12-PyTorch 框架实现多层感知机(MLP):手写数字分类全流程详解
前言
逻辑回应是机器学习中一种经典的监督学习算法,常用于解决分类问题。在深度学习领域,PyTorch 作为一个高效且灵活的框架,为逻辑回应的实现提供了强大的支持。本篇文章将系统介绍如何使用 PyTorch 实现逻辑回应,逐步从基础概念到代码实现,并结合实际应用场景,为初学者和进阶读者提供完整的学习路径。
适用读者:
- 想了解 PyTorch 基础操作的初学者。
- 希望掌握逻辑回应实现与应用的进阶学习者。
- 寻找分类任务实践指导的开发者。
文章结构:
- 逻辑回应基础概念与理论解析。
- 使用 PyTorch 实现逻辑回应的完整步骤。
- 实际案例分析及代码示例。
- 常见问题与优化技巧。
一、逻辑回应基础概念
逻辑回应是一种用于二分类问题的线性模型,其核心思想是利用 sigmoid 函数将线性回应的输出映射到 (0,1) 区间,从而得到类别概率。
1.1 逻辑回应的数学表达
逻辑回应的目标是建立输入特征 X X X 与输出类别 Y Y Y 之间的关系:
P ( Y = 1 ∣ X ) = σ ( W X + b ) P(Y=1|X) = \sigma(WX + b) P(Y=1∣X)=σ(WX+b)
其中:
- σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1+e^{-z}} σ(z)=1+e−z1 是 sigmoid 激活函数。
- W W W 是权重矩阵, b b b 是偏缘项。
- 输出 P ( Y = 1 ∣ X ) P(Y=1|X) P(Y=1∣X) 表示预测为类别 1 的概率。
通过最小化交叉疵损失(Cross-Entropy Loss),优化 W W W 和 b b b 的值,最终得到分类模型。
1.1.1 交叉疵损失函数
对于二分类问题,交叉疵损失函数的公式为:
L = − 1 N ∑ i = 1 N [ y i log ( y ^ i ) + ( 1 − y i ) log ( 1 − y ^ i ) ] L = -\frac{1}{N} \sum_{i=1}^N \left[ y_i \log(\hat{y}_i) + (1-y_i)\log(1-\hat{y}_i) \right] L=−N1i=1∑N[yilog(y^i)+(1−yi)log(1−y^i)]
其中:
- y i y_i yi 是真实标签, y ^ i \hat{y}_i y^i 是模型预测概率。
- N N N 是样本数量。
通过梯度下降法优化上述损失函数,即可训练逻辑回应模型。
1.2 逻辑回应的应用场景
逻辑回应广泛应用于以下领域:
- 医学诊断:如病症预测(是否患病)。
- 金融风控:如信用评分(用户是否违约)。
- 自然进行处理:如文本分类(垃圾邮件检测)。
二、使用 PyTorch 实现逻辑回应
接下来,将通过 PyTorch 框架实现一个完整的逻辑回应模型,包括数据准备、模型构建、训练与测试。
2.1 数据准备
我们以一个简单的二分类问题为例,使用 PyTorch 内置的 make_classification
方法生成数据集。
import torch
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
# 生成数据集
# 修正后的生成数据集代码
X, y = make_classification(
n_samples=1000, # 样本数
n_features=2, # 总特征数
n_informative=2, # 有效特征数(与 n_features 相等)
n_redundant=0, # 冗余特征数(设置为 0)
n_repeated=0, # 重复特征数(设置为 0)
n_classes=2, # 分类类别数
random_state=42 # 随机种子
)
# 数据集划分
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
# 转换为 PyTorch 张量
X_train = torch