Graph Isomorphism Network(图同构网络)的PyTorch实现

本文介绍了使用PyTorch实现图同构网络(GIN)的详细过程,包括图卷积层的定义、模型结构、训练与测试函数的编写。通过实例展示了如何在图数据上进行有监督学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Graph Isomorphism Network(图同构网络,简称GIN)是一种用于图表示学习的神经网络模型。它通过对图结构进行特征聚合和更新,实现对图输入数据的有监督学习。在本文中,我们将使用PyTorch框架来实现GIN模型,并展示如何在图数据上进行训练和推理。

首先,我们需要导入所需的Python库和PyTorch模块:

import torch
import torch.nn as nn
import torch.nn.functional as F

接下来,我们定义GIN模型的主要组件,包括图卷积层(Graph Convolutional Layer)和GIN模型本身。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值