自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(41)
  • 收藏
  • 关注

原创 深度学习笔记41_调用Gensim库训练Word2Vec模型

", "?","…"] # \u3000 是一个 Unicode 编码的字符,它代表一个全角的空白字符,通常在中文文本中用作空格。def remove_stopwords(ls): # 去除停用词。

2025-05-08 14:45:08 398

原创 深度学习笔记40_中文文本分类-Pytorch实现

中文文本分类-Pytorch实现

2025-05-02 17:13:45 546 1

原创 深度学习笔记39_Pytorch文本分类入门

self.embedding = nn.EmbeddingBag(vocab_size, # 词典大小embed_dim, # 嵌入的维度model.train() # 切换为训练模式optimizer.zero_grad() # grad属性归零loss = criterion(predicted_label, label) # 计算网络输出和真实值之间的差距,label为真实值loss.backward() # 反向传播。

2025-04-18 10:30:30 326

原创 深度学习笔记38_构建词典

1.语言环境:Python 3.82.编译器:Pycharm。

2025-04-11 17:04:10 372

原创 深度学习笔记37_one-hot编码案例

1.语言环境:Python 3.82.编译器:Pycharm。

2025-04-04 15:43:45 712

原创 深度学习笔记36_Inception v3算法实战与解析

主要改进点模块化设计优化分解大卷积核:将大卷积核(如 5×5)分解为多个小卷积核(如两个 3×3),减少参数量并增强非线性。非对称卷积:用 1×n 和 n×1 的卷积组合替代 n×n 卷积(如 3×3 分解为 1×3 + 3×1),进一步降低计算复杂度。辅助分类器改进:在中间层添加辅助分类器(带 Batch Normalization),缓解梯度消失问题。高效训练技巧:在每层卷积后加入 BN,加速训练并提升模型稳定性。:对标签做平滑处理,防止过拟合。RMSProp 优化器:替代传统 SGD,优化收敛速度。

2025-03-21 09:28:04 600

原创 深度学习笔记35_Inception v1算法实战与解析

本次Inception v1算法实战与解析项目总结如下:Inception Module是Inception V1的核心组成单元,提出了卷积层的并行结构,实现了在同一层就可以提取不同的特征,如下图(a)所示。按照这样的结构来增加网络的深度,虽然可以提升性能,但是还面临计算量大(参数多)的问题。为改善这种现象,Inception Module借鉴Network-in-Network的思想,使用1x1的卷积核实现降维操作(也间接增加了网络的深度),以此来减少网络的参数量与计算量,如上图b所示。

2025-03-13 22:00:42 951

原创 深度学习笔记34_对于ResNeXt-50算法的思考

代码本身不包含自动对齐通道的逻辑,需通过参数设置(如。

2025-03-06 17:56:23 341

原创 深度学习笔记33_ResNeXt-50实战解析

这周学习ResNeXt-50实战解析:ResNeXt是由何凯明团队在2017年CVPR会议上提出来的新型图像分类网络。ResNeXt是ResNet的升级版,在ResNet的基础上,引入了cardinality的概念,类似于ResNet,ResNeXt也有ResNeXt-50,ResNeXt-101的版本。分组卷积ResNeXt中采用的分组卷机简单来说就是将特征图分为不同的组,再对每组特征图分别进行卷积,这个操作可以有效的降低计算量。

2025-02-20 21:37:54 429

原创 深度学习笔记32_DenseNet+SE-Net实战

这周学习DenseNet结合SE-Net:SE注意力机制的优点在于它能够有效地捕捉不同特征通道之间的关系,并且只引入了少量的额外参数和计算成本。通过引入SE模块,可以显著提升CNN模型在图像分类等任务上的性能,使其更加关注重要的特征,从而提高模型的泛化能力和准确性。SE后面还有许多注意力机制如将通道和空间注意机制结合的CBAM注意力机制,SE的改进ECA注意力机制等。

2025-02-13 19:35:23 328

原创 深度学习笔记31_ResNet与DenseNet结合探索

若使用的是cpu则可忽略三、数据导入四、加载数据五、数据处理 数据可视化​再次检查数据六、构建模型七、训练模型 这周学习ResNet与DenseNet模型结合实现鸟类预测:前后端结构:设计一个网络架构,前半部分使用ResNet提取初始特征,后半部分使用DenseNet进一步融合和精细化特征。这样的结构可以有效地利用两者的优点。分支结构:在网络中实现多分支结构,一部分为

2025-01-22 20:31:14 784

原创 深度学习笔记30_DenseNet算法实战与解析

这周学习DenseNet算法实战与解析:DenseNet是CVPR2017年的Best Paper,它脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了gradient vanishing问题的产生.结合信息流和特征复用的假设,DenseNet当之无愧成为2017年计算机视觉顶会的年度最佳论文。众所周知,CNN已经成为了深度学习方向最主要的网络结构之一。

2025-01-16 19:55:20 650

原创 深度学习笔记29_ResNet50V2算法实战与解析

改进点:(a)original 表示原始的 ResNet 的残差结构,(b)proposed 表示新的 ResNet 的残差结构。主要差别就是(a)结构先卷积后进行 BN 和激活函数计算,最后执行 addition 后再进行ReLU 计算;(b)结构先进行 BN 和激活函数计算后卷积,把 addition 后的 ReLU 计算放到了残差结构内部。改进结果:作者使用这两种不同的结构在 CIFAR-10 数据集上做测试,模型用的是 1001 层的 ResNet 模型。

2025-01-10 20:01:24 623

原创 深度学习笔记28_ResNet-50算法实战

这周学习ResNet-50模型实现鸟类预测:1.介绍,ResNet-50由两个基本块组成,分别名为conv Block和identity BlockBINK1:BINK1有四个参数:C,W,C1,S。S:代表卷积层中的步长,当S为1时,输入尺寸和输出尺寸相同,代表没有进行下采样。C1:代表卷积层输出的特征图数目,即输出通道数。C:代表输入通道数。C和C1相等说明左侧1×1的卷积层没有减少通道数,后三个stage中C=2*C1说明左侧1×1的卷积层减少了通道数。W:代表输入尺寸,即长和宽。

2024-12-27 09:22:16 995

原创 深度学习笔记27_RNN实现阿尔茨海默病诊断(pytorch)

这周学习RNN实现阿尔茨海默病诊断:混淆矩阵是一个二维矩阵,用于总结分类模型在不同类别上的预测结果,包括 True Positive (TP)、False Negative (FN)、False Positive (FP)、True Negative (TN)。性能指标:准确率(Accuracy):模型正确分类的样本占总样本数的比例。精确率(Precision):模型预测为正类别的样本中有多少是真正的正类别。召回率(Recall):实际为正类别的样本中,有多少被模型正确预测为正类别。

2024-12-20 08:59:00 653

原创 深度学习笔记26_糖尿病预测模型优化探索

这周学习LSTM实现糖尿病探索与预测:优势LSTM 能够有效地解决传统RNN中的梯度消失问题,从而可以学习到序列数据中长距离的依赖关系。这使得它在处理诸如长文本、长时间序列等数据时表现出色,能够捕捉到数据中深层次的语义、趋势和模式。LSTM 可以应用于多种不同类型的序列数据处理任务,无论是自然语言、时间序列还是语音信号等。它的门控机制使得模型能够根据不同的数据特点和任务需求,灵活地调整细胞状态中的信息保留与更新,具有较强的适应性。局限。

2024-12-13 09:27:29 364

原创 深度学习笔记25_LSTM实现糖尿病探索与预测

plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号plt.rcParams['figure.dpi'] = 100 # 分辨率plt.show()这周学习LSTM实现糖尿病探索与预测:LSTM原理:长短时记忆网络(LSTM)是一种特殊的循环神经网络(RNN),能够学习长序列数据中的依赖关系。

2024-12-06 18:44:30 550

原创 深度学习笔记24_天气预测

这周学习天气预测,其中主要包括EDA(Exploratory Data Analysis)探索性数据分析可以有效发现变量类型、分布趋势、缺失值、异常值等。缺失值处理:(i)删除缺失值较多的列,通常缺失超过50%的列需要删除;(ii)缺失值填充。对于离散特征,通常将NAN单独作为一个类别;对于连续特征,通常使用均值、中值、0或机器学习算法进行填充。具体填充方法因业务的不同而不同。异常值处理(主要针对连续特征)。如:Winsorizer方法处理。类别合并(主要针对离散特征)。

2024-11-22 14:52:49 1130

原创 深度学习笔记23_LSTM-火灾温度预测

这周学习使用LSTM模型实现火灾温度预测,Long ShortTerm 网络——一般就叫做LSTM——是一种RNN特殊的类型,可以学习长期依赖信息。LSTM和基线RNN并没有特别大的结构不同,但是它们用了不同的函数来计算隐状态。LSTM通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是LSTM的默认行为,而非需要付出很大代价才能获得的能力,所有RNN都具有一种重复神经网络模块的链式的形式。在标准的RNN中,这个重复的模块只有一个非常简单的结构,例如一个tanh层。

2024-11-14 14:26:42 1016

原创 深度学习笔记22_RNN-心脏病预测

本周学习使用RNN模型进行心脏病预测,RNN是一种具有循环连接的神经网络结构,被广泛应用于自然语言处理、语音识别、时序数据分析等任务中。相较于传统神经网络,RNN的主要特点在于它可以处理序列数据,能够捕捉到序列中的时序信息。为什么要发明RNN?我喜欢吃苹果;苹果是一家很棒的公司。现在的任务是要给apple打Label,我们都知道第一个apple是一种水果,第二个apple是苹果公司;

2024-11-08 10:30:00 405

原创 深度学习笔记21_优化器对比实验

本周学习使用VGG16模型进行人脸识别,通过改变优化器得到不一样的效果;一般来说,Adam 是最好的选择,可以通过实验改变优化器来寻找最佳。

2024-11-01 10:31:23 667

原创 深度学习笔记20_数据增强

这是大家可以自由发挥的一个地方# 随机改变图像对比度数据增强类型:1.图像增强随机旋转随机翻转随机缩放裁剪和调整大小2.文本数据增强字符级别在字符级别,数据增强涉及更改文本数据中的单个字符。短语级别在短语级别扩充数据涉及以连贯的方式修改短语或单词组。3.音频数据增强我们可以通过简单地使用 numpy 向数据添加一些随机值来增加音频样本的数量。转移转移时间的想法非常简单。它只是随机将音频向左/向右移动。我们可以使用 librosa 函数改变音高。

2024-10-17 19:40:41 510

原创 深度学习笔记19_TensorFlow实现猫狗识别2

🍨 本文为🔗365天深度学习训练营中的学习记录博客 🍖 原作者:K同学啊 | 接辅导、项目定制一、我的环境1.语言环境:Python 3.92.编译器:Pycharm3.深度学习环境:TensorFlow 2.10.0二、GPU设置 若使用的是cpu则可忽略import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus: gpu0 = gpus[0]

2024-10-11 08:57:31 346

原创 深度学习笔记18_TensorFlow实现猫狗识别

本周通过tenserflow框架创建VGG16网络模型进行猫狗识别:VGG16模型结构:VGG16共包含:13个卷积层(Convolutional Layer),分别用conv3-XXX表示 (XXX为输出通道数,3代表kernel_size)3个全连接层(Fully connected Layer),分别用FC-XXXX表示(XXX为输出神经元个数)5个池化层(Pool layer),分别用maxpool表示。VGG优缺点分析:VGG优点。

2024-10-02 11:45:00 1232

原创 深度学习笔记17_TensorFlow实现咖啡豆识别

本周通过tenserflow框架创建VGG16网络模型进行猴痘病识别学习,学习如何搭建VGG16网络模型,学习在不影响准确率的前提下轻量化模型;通过使用全局平均池化代替全连接层,极大的减少了网络的参数量。

2024-09-20 10:22:54 640

原创 深度学习笔记16_TensorFlow实现好莱坞明星识别

损失函数Loss详解:1. binary_crossentropy(对数损失函数)与sigmoid相对应的损失函数,针对于二分类问题。2. categorical_crossentropy(多分类的对数损失函数)与softmax相对应的损失函数,如果是one-hot编码,则使用3. sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)与softmax相对应的损失函数,如果是整数编码,则使用。

2024-09-13 10:58:31 915

原创 深度学习笔记15_TensorFlow实现运动鞋品牌识别

本周通过学习TensorFlow实现运动鞋品牌识别;首先学习设置动态学习率,在训练神经网络时动态地降低学习率,可以帮助优化算法更有效地收敛到全局最小值,从而提高模型的性能。其次就是学习早停与保存最佳模型参数,模型在指定epoch次都没有提升的情况下,可以提前停止训练。

2024-09-06 16:23:06 1144

原创 深度学习笔记14_TensorFlow实现猴痘病识别

本周通过学习TensorFlow实现猴痘病识别,学习如何增加测试集准确率,通过添加增加dropout层来实现。其次是学习如何找到最好模型、保存模型、加载模型。

2024-08-23 13:00:00 1243

原创 深度学习笔记13_TensorFlow实现天气识别

本周通过学习TensorFlow实现天气识别,学习如何增加Dropout层,还有将最大池化层调整成了平均池化层。学习数据集shuffle方法中buffer_size,而它是用来打乱数据集中数据顺序,训练时非常常用。prefetch()功能详细介绍:CPU 正在准备数据时,加速器处于空闲状态。相反,当加速器正在训练模型时,CPU 处于空闲状态。因此,训练所用的时间是 CPU 预处理时间和加速器训练时间的总和。prefetch()将训练步骤的预处理和模型执行过程重叠到一起。

2024-08-13 17:04:05 530

原创 深度学习笔记12_TensorFlow实现彩色图片分类

本周通过学习TensorFlow实现彩色图片分类,更加了解该框架下构建CNN模型的使用,深入了解模型评估使用方法。CIFAR-10简介CIFAR-10 是3 通道的彩色RGB 图像,而MNIST 是灰度图像。CIFAR-10 的图片尺寸为32 × 32 , 而MNIST 的图片尺寸为28 × 28 ,比MNIST 稍大。相比于手写字符,CIFAR-10含有的是现实世界中真实的物体,不仅噪声很大,而且物体的比例、特征都不尽相同,这为识别带来很大困难。

2024-08-08 09:53:22 444 1

原创 深度学习笔记11_TensorFlow实现mnist手写数字识别

本次基于深度学习的TensorFlow实现mnist手写数字识别项目总结如下:本周主要学习使用TensorFlow 框架实现手写数字识别,学习该框架使用语法、使用的库、以及如何实现图片识别的内容。而TensorFlow 是一个用于机器学习的开源框架,可以用来快速地构建神经网络,同时快捷地进行网络的训练、评估与保存。MNIST手写数字数据集介绍MNIST手写数字数据集来源于是美国国家标准与技术研究所,是著名的公开数据集之一。

2024-08-02 10:03:20 655

原创 深度学习笔记10_Pytorch实现车牌识别

本次基于深度学习的Pytorch实现车牌识别项目总结如下:本周主要学习如何导入无法分类的数据集,通过自定义一个MyDataset加载车牌数据集并完成识别;尝试写统计测试集的准确率代码。

2024-07-26 11:33:19 5829

原创 深度学习笔记09_YOLOv5-Backbone模块实现

Backbone骨干网络骨干网络是指用来提取图像特征的网络,它的主要作用是将原始的输入图像转化为多层特征图,以便后续的目标检测任务使用。在Yolov5中,使用的是CSPDarknet53或ResNet骨干网络,这两个网络都是相对轻量级的,能够在保证较高检测精度的同时,尽可能地减少计算量和内存占用。Backbone中的主要结构有Conv模块、C3模块、SPPF模块。Conv模块Conv模块是卷积神经网络中常用的一种基础模块,它主要由卷积层、BN层和激活函数组成。下面对这些组成部分进行详细解析。

2024-07-12 11:02:51 952

原创 深度学习笔记08_YOLOv5-C3模块实现

本次基于深度学习的pytorch实现YOLOv5-C3模块项目总结如下;YOLOv5的Head网络由3个不同的输出层组成,分别负责检测大中小尺度的目标。YOLOv5使用CSPDarknet53作为其主干网络,其具有较强的特征提取能力和计算效率。Neck网络:YOLOv5使用的是FPN(FPN网络能够在不同的特征图层次上进行检测,可以提高目标检测的性能)网络,可以融合来自不同特征图层次的信息。

2024-07-05 09:45:00 2152

原创 深度学习笔记07_pytorch实现咖啡豆识别

本次基于深度学习的pytorch实现咖啡豆识别项目总结如下:1.学习手动搭建VGG-16网络框架,在咖啡豆图片识别中可以获得很高准确率;2.通过增加BatchNormalization、Dropout层和全局平均池化层代替全连接层,VGG-16的Total params是14,719,684,测试集准确率达到100%。

2024-06-28 10:30:00 1274

原创 深度学习笔记06_pytorch实现人脸识别

本次基于深度学习的pytorch实现人脸识别项目总结如下:1.学习调用官方VGG-16网络框架,但是得到的效果并不好,通过查询文章手动构建VGG-16模型,可以得到较好准确率;2.3x3卷积核的好处参数少: 一个3x3卷积核拥有9个权重参数,而一个5x5卷积核则需要25个权重参数,因此采用3x3卷积核可以大幅度减少网络的参数数量,从而减少过拟合的风险;提高非线性能力: 多个3x3卷积核串联起来可以形成一个感受野更大的卷积核,而且这个组合具有更强的非线性能力。

2024-06-21 10:15:00 852

原创 深度学习笔记05_pytorch实现运动鞋识别

本次基于深度学习的pytorch实现运动鞋识别项目总结如下:1.学习设置动态学习率,在训练的不同阶段自动调整学习率的大小,以使模型在全局最优解附近更好地收敛;2.通过更换优化器、增加dropout层,来增加测试集acc;3.通过每轮训练测试集的准确率,找到最高的,保存最佳模型权重。

2024-06-08 16:17:03 1055

原创 深度学习笔记04_pytorch实现猴痘病识别

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络

2024-05-30 10:16:24 909

原创 深度学习笔记03_pytorch实现天气识别

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络

2024-05-23 10:38:51 2356

原创 深度学习笔记02_CIFAR10彩色图片识别(pytorch)

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络

2024-05-18 22:00:00 962

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除