MerkleTree可视化生成与验证平台

这几天搭建了一个算法相关的web前后端小项目,并实现了主要的功能。这篇文章主要是对项目总结,具体代码后续会推到github上供大家查阅订正。


2025年6月28日
代码已经推到仓库https://github.com/Joyce081/MerkleTree.git了,在分支master里,大家可以部署到本地运行。注意修改application.yml文件中数据库配置、redis配置和邮箱服务配置。

效果展示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

一、接口测试

(1)与树有关的接口测试

确保数据库中有相关用于测试的数据,以下为本次测试案例中用到的数据

  1. 数据库中有ID为2的用户(测试数据中已存在)
  2. 数据库中有ID为49的树及其叶子节点( [“1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “11”, “12”, “13”, “14”, “15”])
1. 创建 Merkle Tree

测试用例 1: 创建有效的 Merkle Tree

  • 方法: POST
  • URL: /api/merkle/create
  • 请求参数:
    • userId: 2
    • treeName: “测试树”
    • algorithm: “sha256”
    • dataItems: [“data1”, “data2”, “data3”, “data4”]
  • 预期结果:
    • 状态码: 200
    • 返回创建的树信息,包含正确的rootHash和leafCount
    • 数据库中有对应的树和叶子节点记录

测试用例 2: 使用无效算法创建树

  • 方法: POST
  • URL: /api/merkle/create
  • 请求参数:
    • userId: 2
    • treeName: “测试树”
    • algorithm: “invalid_algorithm”
    • dataItems: [“data1”, “data2”]
  • 预期结果:
    • 状态码: 500 或其他错误码
    • 返回错误信息"不支持的哈希算法"

测试用例 3: 空数据项创建树

  • 方法: POST
  • URL: /api/merkle/create
  • 请求参数:
    • userId: 2
    • treeName: “空树”
    • algorithm: “sha256”
    • dataItems: []
  • 预期结果:
    • 状态码: 400 或其他错误码
    • 返回错误信息"数据项不能为空"
2. 获取 Merkle Tree

测试用例 4: 获取存在的树

  • 方法: GET
  • URL: /api/merkle/49
  • 预期结果:
    • 状态码: 200
    • 返回ID为49的树信息,包含原始数据列表
    • 包含正确的rootHash和leafCount

测试用例 5: 获取不存在的树

  • 方法: GET
  • URL: /api/merkle/9999
  • 预期结果:
    • 状态码: 404 或其他错误码
    • 返回错误信息"未找到指定的MerkleTree"
3. 获取用户的树列表

测试用例 6: 获取有树的用户列表

  • 方法: GET
  • URL: /api/merkle/user/2
  • 预期结果:
    • 状态码: 200
    • 返回用户2的所有树列表
    • 列表不为空

测试用例 7: 获取无树的用户列表

  • 方法: GET
  • URL: /api/merkle/user/999
  • 预期结果:
    • 状态码: 200
    • 返回空列表
4. 获取验证路径

测试用例 8: 获取存在的叶子节点验证路径

  • 方法: GET
  • URL: /api/merkle/proof?treeId=49&leafData=1
  • 预期结果:
    • 状态码: 200
    • 返回验证路径列表
    • 路径包含正确的兄弟节点和方向信息
    • 最后一项是根节点

测试用例 9: 获取不存在的叶子节点验证路径

  • 方法: GET
  • URL: /api/merkle/proof?treeId=49&leafData=invalid_data
  • 预期结果:
    • 状态码: 404 或其他错误码
    • 返回错误信息"叶子节点不存在"
5. 验证数据变更

测试用例 10: 验证未变更的数据

  • 方法: POST
  • URL: /api/merkle/verify-change?treeId=49
  • 请求体: {“originalData”: “1”, “modifiedData”: “1”}
  • 预期结果:
    • 状态码: 200
    • 返回结果中isChanged为false
    • originalHash和modifiedHash相同

测试用例 11: 验证已变更的数据

  • 方法: POST
  • URL: /api/merkle/verify-change?treeId=49
  • 请求体: {“originalData”: “1”, “modifiedData”: “changed”}
  • 预期结果:
    • 状态码: 200
    • 返回结果中isChanged为true
    • originalHash和modifiedHash不同
6. 验证整树完整性

测试用例 12: 验证未篡改的树

  • 方法: GET
  • URL: /api/merkle/verify-tree?treeId=49
  • 预期结果:
    • 状态码: 200
    • 返回结果中isValid为true
    • storedRootHash和computedRootHash相同

测试用例 13: 验证篡改后的树(需要先模拟篡改)

  • 方法: GET
  • URL: /api/merkle/verify-tree?treeId=49
  • 前提: 手动修改数据库中某个叶子节点的hash_value
  • 预期结果:
    • 状态码: 200
    • 返回结果中isValid为false
    • storedRootHash和computedRootHash不同
7. 检测数据变更

测试用例 14: 检测无变更的数据

  • 方法: GET
  • URL: /api/merkle/detect-changes?treeId=49
  • 请求体: [“1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “11”, “12”, “13”, “14”, “15”]
  • 预期结果:
    • 状态码: 200
    • 返回空变更列表

测试用例 15: 检测有变更的数据

  • 方法: GET
  • URL: /api/merkle/detect-changes?treeId=49
  • 请求体: [“changed”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “11”, “12”, “13”, “14”, “15”]
  • 预期结果:
    • 状态码: 200
    • 返回变更列表,包含position=0的变更信息
8. 删除树

测试用例 16: 删除存在的树

  • 方法: DELETE
  • URL: /api/merkle/49
  • 预期结果:
    • 状态码: 200
    • 返回成功信息
    • 数据库中的树和关联叶子节点被删除

测试用例 17: 删除不存在的树

  • 方法: DELETE
  • URL: /api/merkle/9999
  • 预期结果:
    • 状态码: 404 或其他错误码
    • 返回错误信息"未找到指定记录"

(2)与用户有关的接口测试

1. 发送验证码接口

测试用例 1: 发送验证码到有效邮箱

  • 方法: POST
  • URL: /user/sendVerifyCode
  • 请求体: {“email”: “test@example.com”}
  • 前提: test@example.com 未注册
  • 预期结果:
    • 状态码: 200
    • 返回"验证码发送成功"
    • Redis中存储了验证码(键为"verify_code_test@example.com")
    • 收到验证码邮件

测试用例 2: 发送验证码到已注册邮箱

  • 方法: POST
  • URL: /user/sendVerifyCode
  • 请求体: {“email”: “test02@example.com”} (假设已注册)
  • 预期结果:
    • 状态码: 201
    • 返回"该邮箱已被注册"
    • Redis中没有存储验证码

测试用例 3: 发送验证码到无效邮箱格式

  • 方法: POST
  • URL: /user/sendVerifyCode
  • 请求体: {“email”: “invalid_email”}
  • 预期结果:
    • 状态码: 400
    • 返回"邮箱格式不正确"

测试用例 4: 发送验证码到空邮箱

  • 方法: POST
  • URL: /user/sendVerifyCode
  • 请求体: {“email”: “”}
  • 预期结果:
    • 状态码: 400
    • 返回"邮箱不能为空"
2. 用户注册接口

测试用例 5: 使用有效信息注册

  • 方法: POST
  • URL: /user/register
  • 请求体:
    {
      "username": "newuser",
      "password": "123456",
      "email": "newuser@example.com",
      "verifyCode": "123456" (假设Redis中存储的验证码为"123456")
    }
    
  • 前提:
    • 已发送验证码到newuser@example.com
    • Redis中有"verify_code_newuser@example.com"=“123456”
  • 预期结果:
    • 状态码: 200
    • 返回"注册成功"
    • 数据库中有新用户记录
    • Redis中的验证码被删除

测试用例 6: 使用错误验证码注册

  • 方法: POST
  • URL: /user/register
  • 请求体:
    {
      "username": "newuser",
      "password": "123456",
      "email": "newuser@example.com",
      "verifyCode": "wrongcode"
    }
    
  • 前提: Redis中有"verify_code_newuser@example.com"=“123456”
  • 预期结果:
    • 状态码: 201
    • 返回"验证码错误或已过期"
    • 数据库中没有新记录

测试用例 7: 使用已注册邮箱注册

  • 方法: POST
  • URL: /user/register
  • 请求体:
    {
      "username": "existing",
      "password": "123456",
      "email": "test02@example.com", (假设已注册)
      "verifyCode": "123456"
    }
    
  • 预期结果:
    • 状态码: 201
    • 返回"用户已存在"
3. 用户登录接口

测试用例 8: 使用正确凭据登录

  • 方法: POST
  • URL: /user/login
  • 请求体:
    {
      "email": "test02@example.com",
      "password": "123456"
    }
    
  • 前提: 数据库中有email=“test02@example.com”, password="123456"的用户
  • 预期结果:
    • 状态码: 200
    • 返回"登录成功"
    • 返回用户信息

测试用例 9: 使用错误邮箱登录

  • 方法: POST
  • URL: /user/login
  • 请求体:
    {
      "email": "nonexistent@example.com",
      "password": "123456"
    }
    
  • 预期结果:
    • 状态码: 201
    • 返回"登录失败"

测试用例 10: 使用错误密码登录

  • 方法: POST
  • URL: /user/login
  • 请求体:
    {
      "email": "test02@example.com",
      "password": "wrongpassword"
    }
    
  • 预期结果:
    • 状态码: 201
    • 返回"登录失败"

二、后端功能与实现逻辑

(1)用户模块

1. 核心功能
  • 用户注册:邮箱验证码注册流程
  • 用户登录:基于邮箱的简单认证
  • 邮箱验证:发送验证码及验证码校验
  • 邮箱检查:检查邮箱是否已被注册
2. 实现逻辑

注册流程

  1. 发送验证码

    • 前端提交邮箱 → 后端验证格式 → 检查是否已注册 → 生成6位随机验证码 → 发送邮件 → 存储到Redis(5分钟有效期)
  2. 注册验证

    • 用户提交注册信息(含验证码) → 从Redis获取验证码比对 → 验证通过则创建用户 → 删除Redis中的验证码
3. 技术实现
  • 验证码生成VerifyCodeUtil生成随机数字验证码
  • 邮件发送EmailService使用Spring Mail发送简单邮件
  • 数据存储
    • 用户信息:MySQL数据库(user表)
    • 验证码:Redis缓存(5分钟自动过期)
  • 密码处理:加密存储
4. 安全控制
  • 邮箱格式正则验证
  • 验证码时效性控制(5分钟)
  • 注册前邮箱唯一性检查

(2)Merkle树模块

1. 核心功能
  • 树创建:根据输入数据构建Merkle树
  • 树查询:按ID或用户ID查询树信息
  • 验证路径:获取叶子节点的验证路径
  • 数据验证
    • 单数据变更验证
    • 整树完整性验证
    • 数据变更检测
  • 树删除:删除树及关联叶子节点
2. 实现逻辑

树构建流程

  1. 输入处理:接收数据项列表和哈希算法类型
  2. 哈希计算
    • 计算每个叶子节点哈希
    • 逐层计算父节点哈希(左哈希+右哈希)
  3. 数据存储
    • 树信息存入merkle_trees表(含树结构JSON)
    • 叶子节点存入leaves
3. 验证机制
  • 单数据验证:比较原始数据和修改后数据的哈希值
  • 整树验证:重新计算树哈希与存储的根哈希比对
  • 变更检测:逐个比对当前数据与存储数据的哈希值
4. 技术实现
  • 哈希计算MerkleTreeUtil支持SHA256/SHA1/MD5算法
  • 树结构存储:JSON格式存储各层级哈希
  • 数据关联
    • 树与用户关联(user_id)
    • 树与叶子节点关联(tree_id)
  • 事务处理:树删除操作包含叶子节点的级联删除

(3)模块间关系

  1. 用户-树关联:通过user_id建立用户与树的所属关系
  2. 权限控制:树操作需验证用户权限(当前实现中部分接口已包含user_id参数)
  3. 数据隔离:用户只能访问自己创建的树

(4)关键技术点

  1. Merkle树构建算法:自底向上逐层哈希计算
  2. 验证路径生成:从叶子节点到根节点的兄弟节点收集
  3. JSON处理:树结构的序列化与反序列化
  4. 事务管理:关键操作如树删除使用@Transactional

(5)不足

  1. 用户认证:增加token 认证
  2. 数据验证时不能有重复数据值

三、前端功能与实现逻辑

(1) 系统架构

前端采用Vue 3 + Element Plus + D3.js技术栈,主要包含以下组件:

  • App.vue:根组件,负责全局布局和favicon设置
  • LoginRegister.vue:登录注册页面
  • Home.vue:主功能页面,包含MerkleTree构建、可视化和验证功能
  • Personal.vue:个人中心页面,展示历史记录

(2) 核心功能模块

1. 用户认证系统

实现逻辑

  • 使用Vuex管理全局认证状态
  • 路由守卫检查访问权限
  • 本地存储token和用户信息实现持久化登录
  • 提供登录、注册、退出功能

关键代码

  • store/index.js中的auth状态管理
  • router/index.js中的路由守卫
  • LoginRegister.vue中的表单验证和API调用
2. MerkleTree构建与可视化

功能特点

  • 支持多行输入数据构建MerkleTree
  • 可选择不同哈希算法(SHA-256/SHA-1/MD5)
  • 自定义树名称
  • 基于D3.js的可视化展示

实现逻辑

  • 数据输入后调用后端API生成MerkleTree
  • 使用D3.js的树布局算法计算节点位置
  • 动态渲染树形结构,不同层级使用不同颜色
  • 支持缩放和下载图片功能

关键代码

  • Home.vue中的generateMerkleTreedrawTree方法
  • D3.js的树布局和数据转换逻辑
3. 数据验证功能

功能特点

  • 叶子节点修改验证
  • 整棵树完整性验证
  • 可视化高亮显示验证路径

实现逻辑

  • 选择叶子节点后获取验证路径
  • 修改数据后调用验证API
  • 高亮显示从叶子到根的路径
  • 使用不同颜色和动画效果突出显示

关键代码

  • verifyDataChangeverifyEntireTree方法
  • 高亮节点和连接线的样式处理
4. 历史记录管理

功能特点

  • 查看历史构建的MerkleTree
  • 删除历史记录
  • 从历史记录快速恢复

实现逻辑

  • 调用API获取用户的历史记录列表
  • 通过路由参数传递历史数据
  • 提供删除功能调用后端API

关键代码

  • Personal.vue中的表格展示和操作按钮
  • loadHistorydeleteTree方法

(3)技术亮点

  1. 响应式设计

    • 使用Vue 3的Composition API组织代码
    • 动态计算可视化区域高度适应不同屏幕
  2. 可视化交互

    • D3.js实现动态树形布局
    • 节点悬停效果和点击交互
    • 平滑的缩放动画
  3. 状态管理

    • Vuex集中管理认证状态
    • 本地存储实现持久化登录
  4. UI/UX优化

    • Element Plus提供美观的UI组件
    • 表单验证和错误提示
    • 加载状态和操作反馈

(4)数据流

  1. 用户认证流程

    • 登录/注册 → 获取token → 存储到Vuex和localStorage → 路由跳转
  2. MerkleTree构建流程

    • 输入数据 → 调用API生成 → 接收树数据 → 可视化渲染
  3. 验证流程

    • 选择节点 → 获取验证路径 → 修改数据 → 调用验证API → 显示结果

四、总结

该系统整体设计合理,功能完整,通过可视化方式直观展示了MerkleTree的结构和验证过程,为用户提供了良好的交互体验。

<think>好的,我现在需要帮助用户解决关于Java如何对比历史版本并生成版本修改链路的问题。首先,回顾之前的对话历史,用户之前询问了数据库版本控制和Java对比变更记录的方法,现在进一步想了解如何生成版本修改链路。用户可能是开发人员,负责维护一个需要版本追踪的系统,或者在处理需要审计和版本回滚的项目。 用户的需求可能包括:如何用Java比较不同版本的数据或结构变化,生成详细的修改历史链路,可能用于审计、调试或版本回滚。需要明确的是,用户提到的“历史版本”可能指数据库的结构变更(如DDL)或数据变更(如DML),或者两者都有。之前的回答已经介绍了使用Liquibase进行结构对比,以及通过历史表进行数据对比,现在需要将这些对比结果串联成修改链路。 首先,需要确定生成版本修改链路的具体步骤。这可能包括版本获取、差异对比、链路生成可视化展示等环节。在Java中,可能需要使用现有的库或框架,比如Liquibase处理结构变更,自定义代码或工具处理数据变更。对于数据变更,可能需要从历史表中读取不同版本的数据,比较差异,并记录变更路径。 接下来,考虑实现的具体方法。结构版本链路可能通过Liquibase的Diff功能获取差异,然后记录每个版本的变更描述。数据版本链路则需要查询历史表,按时间或版本号排序,逐个比较相邻版本,记录字段变化。这里可能需要处理大量数据,所以性能优化策略,如增量对比、分页查询等,也是需要考虑的。 然后,需要思考如何将这些对比结果组织成链路。链路的结构可能包括版本号、时间戳、操作类型、变更内容、操作者等信息。对于数据结构,可能需要生成类似Git的提交历史;对于数据记录,可能需要显示每个字段的变化历史。 此外,用户可能还关心如何存储这些链路信息,是否需要持久化到数据库,或者实时生成。审计和安全性也是重要因素,比如如何验证数据的完整性,使用哈希算法(如MD5、SHA)生成数据指纹,确保未被篡改。 可能的挑战包括处理大规模数据时的性能问题,如何高效比较和存储变更链路,以及如何将结构变更和数据变更整合到同一链路中。需要根据用户的实际应用场景推荐合适的方案,比如小型项目使用触发器+历史表,微服务架构使用CDC工具等。 最后,需要总结实现步骤,提供代码示例,并给出应用场景和建议,帮助用户选择适合他们项目的方法。确保回答结构清晰,分步骤说明,涵盖核心实现、代码示例、优化策略和实际应用,满足用户的实际需求。</think>以下是Java实现历史版本对比生成版本修改链路的详细方案,采用分步骤实现方式: --- ### 一、版本修改链路生成原理 $$ \text{版本链路} = \bigcup_{i=1}^{n} \Delta(v_{i-1}, v_i) $$ 其中$\Delta$表示版本差异,$v_i$为第i个版本号 --- ### 二、核心实现步骤 #### 1. 版本元数据管理 ```java // 定义版本描述对象 public class VersionMeta { private String versionId; // 版本号: V1.0.0 private LocalDateTime timestamp; private String operator; private String changeType; // DDL/DML private String checksum; // 数据指纹 } ``` #### 2. 版本差异对比引擎 ```java // 结构差异对比(使用Liquibase) public List<Change> compareStructure(Database base, Database target) { DiffResult diff = new DiffGenerator(base, target).compare(); return diff.getDifferences(); // 包含字段/表/索引等变更 } // 数据差异对比 public Map<String, ValueDiff> compareData( Map<String, Object> oldData, Map<String, Object> newData) { return oldData.entrySet().stream() .filter(e -> !Objects.equals(e.getValue(), newData.get(e.getKey()))) .collect(Collectors.toMap( Map.Entry::getKey, e -> new ValueDiff(e.getValue(), newData.get(e.getKey())) )); } ``` #### 3. 链路生成算法 ```java // 生成版本链路(示例) public VersionChain generateChain(List<VersionMeta> versions) { VersionChain chain = new VersionChain(); for (int i = 1; i < versions.size(); i++) { VersionDiff diff = new VersionDiff(); diff.setFromVersion(versions.get(i-1)); diff.setToVersion(versions.get(i)); // 获取具体差异内容 diff.setChanges(compareVersions( versions.get(i-1), versions.get(i) )); chain.addDiff(diff); } return chain; } ``` --- ### 三、数据结构设计 $$ \text{版本链路} \Rightarrow \begin{cases} \text{节点:版本元数据} \\ \text{边:版本差异详情} \end{cases} $$ ```mermaid graph LR A[V1.0.0] -- 创建用户表 --> B[V1.1.0] B -- 新增手机号字段 --> C[V1.2.0] C -- 删除过期数据 --> D[V1.3.0] ``` --- ### 四、典型代码实现 #### 1. 生成结构修改链路 ```java // 使用Liquibase生成DDL修改链路 DatabaseHistory history = liquibase.getDatabaseHistory(); List<RanChangeSet> changeSets = history.getRanChangeSets(); changeSets.stream() .map(cs -> new VersionNode( cs.getId(), cs.getAuthor(), cs.getComments() // 包含变更描述 )) .forEach(chain::addNode); ``` #### 2. 生成数据修改链路 ```java // 查询数据历史版本 String sql = "SELECT * FROM product_history WHERE product_id = ? ORDER BY version"; try (PreparedStatement stmt = conn.prepareStatement(sql)) { stmt.setInt(1, 1001); ResultSet rs = stmt.executeQuery(); List<DataVersion> versions = new ArrayList<>(); while (rs.next()) { versions.add(new DataVersion( rs.getInt("version"), rs.getTimestamp("modified_at"), parseData(rs) // 解析数据字段 )); } // 生成数据变更链路 for (int i = 1; i < versions.size(); i++) { DataDiff diff = DataComparator.compare( versions.get(i-1), versions.get(i) ); chain.addDataDiff(diff); } } ``` --- ### 五、高级功能实现 #### 1. 变更影响分析 ```java // 分析字段级影响范围 public ImpactAnalysis analyzeImpact(VersionChain chain) { return chain.getDiffs().stream() .flatMap(diff -> diff.getFieldChanges().stream()) .collect(Collectors.groupingBy( FieldChange::getFieldName, Collectors.counting() )); } ``` #### 2. 可视化输出 ```json // 示例输出结构 { "versionChain": [ { "from": "V1.0.0", "to": "V1.1.0", "changes": [ { "type": "ADD_COLUMN", "table": "user", "field": "mobile", "dataType": "varchar(11)" } ] } ] } ``` --- ### 六、性能优化策略 1. **增量计算** $$ \Delta_{new} = \text{Compare}(v_{n}, v_{n-1}) \cup \Delta_{existing} $$ 2. **缓存机制** ```java LoadingCache<String, VersionChain> cache = Caffeine.newBuilder() .maximumSize(100) .expireAfterWrite(10, TimeUnit.MINUTES) .build(this::generateChain); ``` 3. **并行处理** ```java versions.parallelStream() .map(this::processVersion) .collect(Collectors.toList()); ``` --- ### 七、应用场景建议 1. **审计追踪** - 记录每个字段的修改历史 - 生成操作时间轴 2. **版本回滚** ```sql -- 自动生成逆向SQL示例 ALTER TABLE user DROP COLUMN mobile; -- 回滚V1.1.0变更 ``` 3. **持续集成** ```mermaid graph TB CI[CI Pipeline] -->|触发| Diff(版本差异检测) Diff -->|发现变更| Notify[通知相关人员] ``` 实际项目中建议: - 使用**Git-like机制**管理数据库版本 - 集成**Spring Boot Actuator**监控版本健康状态 - 重要数据采用**Merkle Tree**验证完整性: $$ \text{RootHash} = \text{Hash}( \text{Hash}(v_1) \| \text{Hash}(v_2) ) $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值