在数据驱动决策的时代,爬虫与数据分析的结合能让我们快速从海量网络信息中挖掘价值。本文以中国大学排名数据为例,带大家完整走一遍 “爬虫获取数据→Pandas 预处理→Matplotlib 可视化” 的全流程,零基础也能轻松上手!
一、项目背景与目标
高三网发布的中国大学排名包含学校名称、总分、全国排名、星级排名等关键信息,这些数据对考生择校、教育研究具有重要参考意义。我们的目标是:
- 爬取该网站的大学排名数据
- 清洗处理数据中的缺失值
- 通过可视化图表展示各星级学校的分布情况
二、爬虫实现:从网页中提取数据
2.1 核心工具选择
本次爬虫使用requests
库发送网络请求,BeautifulSoup
库解析 HTML 结构,两者搭配能高效提取网页数据。
2.2 爬虫核心代码解析
(1)获取网页内容
首先定义通用的网页请求函数,处理请求异常并设置编码:
(2)解析 HTML 数据
使用 BeautifulSoup 定位表格数据,提取目标字段:
(3)保存为 CSV 文件
将提取的数据写入 CSV 文件,方便后续分析:
(4)主程序调用
三、数据预处理:处理缺失值
爬取的数据中,“总分” 列存在空值,我们用 Pandas 提供 4 种方法处理:
3.1 删除含空值的行
适合数据量较大且空值比例低的场景:
3.2 用指定内容替换空值
当需要保留样本完整性时使用:
3.3 均值填充空值
适合数据近似正态分布的场景:
3.4 中位数填充空值
适合存在极端值的数据分布:
四、数据分析可视化:让数据说话
4.1 柱形图展示各星级学校数量
(1)垂直柱形图
(2)水平柱形图
4.2 饼图展示星级分布占比
五、项目总结
通过本次实战,我们掌握了:
基础爬虫框架:请求→解析→存储的完整流程
数据清洗技巧:4 种缺失值处理方法的适用场景
可视化方法:柱形图与饼图的选择与绘制
从网页数据到直观图表,Python 让数据分析变得简单高效。