从网页到图表:Python 爬虫 + 数据分析实战之中国大学排名可视化全流程

在数据驱动决策的时代,爬虫与数据分析的结合能让我们快速从海量网络信息中挖掘价值。本文以中国大学排名数据为例,带大家完整走一遍 “爬虫获取数据→Pandas 预处理→Matplotlib 可视化” 的全流程,零基础也能轻松上手!

一、项目背景与目标

高三网发布的中国大学排名包含学校名称、总分、全国排名、星级排名等关键信息,这些数据对考生择校、教育研究具有重要参考意义。我们的目标是:

  1. 爬取该网站的大学排名数据
  2. 清洗处理数据中的缺失值
  3. 通过可视化图表展示各星级学校的分布情况

二、爬虫实现:从网页中提取数据

2.1 核心工具选择

本次爬虫使用requests库发送网络请求,BeautifulSoup库解析 HTML 结构,两者搭配能高效提取网页数据。

2.2 爬虫核心代码解析

(1)获取网页内容

首先定义通用的网页请求函数,处理请求异常并设置编码:

(2)解析 HTML 数据

使用 BeautifulSoup 定位表格数据,提取目标字段:

(3)保存为 CSV 文件

将提取的数据写入 CSV 文件,方便后续分析:

(4)主程序调用

三、数据预处理:处理缺失值

爬取的数据中,“总分” 列存在空值,我们用 Pandas 提供 4 种方法处理:

3.1 删除含空值的行

适合数据量较大且空值比例低的场景:

3.2 用指定内容替换空值

当需要保留样本完整性时使用:

3.3 均值填充空值

适合数据近似正态分布的场景:

3.4 中位数填充空值

适合存在极端值的数据分布:

四、数据分析可视化:让数据说话

4.1 柱形图展示各星级学校数量

(1)垂直柱形图

(2)水平柱形图

4.2 饼图展示星级分布占比

五、项目总结

通过本次实战,我们掌握了:

基础爬虫框架:请求→解析→存储的完整流程

数据清洗技巧:4 种缺失值处理方法的适用场景

可视化方法:柱形图与饼图的选择与绘制

从网页数据到直观图表,Python 让数据分析变得简单高效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值