【论文分享】HashGAT-VCA:一种结合哈希函数和图注意力网络的矢量元胞自动机模型,用于城市土地利用变化模拟

本文考虑地块内部异质性,提出一个结合哈希函数和图注意力网络(GAT)的矢量元胞自动机(VCA)方法,用于研究城市土地利用变化;并将该模型应用于模拟深圳市2009年至2012年的城市土地利用变化,结果表明,HashGAT-VCA模型的模拟准确性显著优于其他VCA模型。


【论文题目】

HashGAT-VCA: A vector cellular automata model with hash function and graph attention network for urban land-use change simulation

【题目翻译】

HashGAT-VCA:一种结合哈希函数和图注意力网络的矢量元胞自动机模型,用于城市土地利用变化模拟

【期刊信息】

Landscape and Urban Planning;Volume 250, October 2024, 105145

【作者信息】

Qingfeng Guan, 中国地质大学地理与信息工程学院,湖北省武汉市430078,中国地质大学地理信息系统国家工程研究中心,湖北省武汉市430078,[email protected]

Jianfeng Li, 中国地质大学地理与信息工程学院,湖北省武汉市430078,中国地质大学地理信息系统国家工程研究中心,湖北省武汉市430078,[email protected]

Yaqian Zhai, 河南财经政法大学资源与环境学院,中国河南省郑州市金水东路180号,450016,[email protected]

Xun Liang, 中国地质大学地理与信息工程学院,湖北省武汉市430078,中国地质大学地理信息系统国家工程研究中心,湖北省武汉市430078,[email protected]

Yao Yao,中国地质大学地理与信息工程学院,湖北省武汉市430078,中国地质大学地理信息系统国家工程研究中心,湖北省武汉市430078,粤港澳智慧城市联合实验室,中国深圳,[email protected]

【论文链接】

https://doi.org/10.1016/j.landurbplan.2024.105145

【关键词】

矢量元胞自动机、图注意力网络、哈希函数、土地利用变化模拟、空间交互

【本文亮点】

  • 提出了一个考虑地块内部异质性的框架。 

  • 使用哈希函数处理地块内部驱动因素的异质性。 

  • 使用图注意力网络(GAT)构建不同的邻域并获取交互关系。 

  • 不同的哈希函数和邻域对结果具有显著影响。


【摘要】

矢量元胞自动机(VCA)模型在表示不规则形状地块的时空动态方面表现出色,已广泛应用于土地利用变化模拟。然而,当前研究面临以下问题:(1) 大多数VCA模型在评估环境驱动效应时忽略了每个地块内部驱动因素的空间异质性;(2) 在计算邻域效应时,通常采用邻近地块的土地利用类型的简单统计,忽视了邻近地块内驱动因素的影响;(3) 对地块间交互作用的探索能力有限。为解决上述问题,本研究提出了一种用于研究城市土地利用变化的HashGAT-VCA模型。该模型利用哈希函数将每个不规则地块内驱动因素的非均匀分布编码为固定长度的向量,并基于地块间的空间拓扑关系构建图结构。通过采用图注意力网络(GAT),模型探索了环境驱动效应和地块间交互作用机制,以计算每个地块的土地利用变化概率。该HashGAT-VCA模型被应用于模拟中国深圳市2009年至2012年的城市土地利用变化。与其他VCA模型相比,HashGAT-VCA展示了更高的模拟精度。结果表明,HashGAT-VCA能够有效捕捉异质分布的驱动因素和地块间交互作用对土地利用变化的影响。此外,本研究还模拟了在生态控制策略下2025年和2030年的土地利用模式,为城市规划提供了决策支持。


【引言】

在中国,随着城市人口的增加,城市化率从1978年的17.92%迅速上升到2012年的52.57%,并在2022年达到了65.22%。这一持续的城市化进程具有重大的经济、社会和文化意义。然而,它也带来了许多挑战和问题(Deng et al., 2015)。城市化是一个高度复杂的社会经济过程(Deng et al., 2009)。随着城市化的加速,城市变化的模式变得越来越复杂(Tao and Ye, 2022)。实际上,有许多因素影响城市化,使得有效探索城市土地利用变化机制成为一个关键问题。

学者们已经开发了各种地理方法和模型来探索城市扩展机制并模拟城市土地利用变化(Li et al., 2017; Noszczyk, 2019)。其中,最广泛使用的是元胞自动机(CA)模型,它通过自下而上的方法来建模复杂的地理现象(Batty and Xie, 1994; Li et al., 2022; Liao et al., 2019)。

基于栅格的元胞自动机(RCA)模型是CA模型的一种典型形式,通常使用规则形状的单元格作为基本单元来研究复杂的地理动态(Chen et al., 2020; Li and Yeh, 2000; Liang et al., 2021a,b)。然而,由于城市实体的形状不规则,基于栅格的CA模型在进行细粒度模拟时面临挑战(Liao et al., 2016)。为了解决这一问题,一些研究者采用了基于斑块的CA模型,将多个栅格单元合并为斑块,用于城市扩展和土地利用变化模拟(Chen et al., 2014; Chen et al., 2016; Liang et al., 2021a,b; Meentemeyer et al., 2013)。由于土地分块通常由不规则形状的单元表示,使用栅格单元研究这些地块不利于准确捕捉地块的形状特征。

为了解决上述限制,已经开发了矢量元胞自动机(VCA)模型,该模型使用矢量多边形来表示土地分块实体。这种方法成功地解决了任意形状空间单元的细粒度划分问题,并在模拟城市扩展和土地利用变化方面显示出良好的潜力(O’Sullivan, 2001)。VCA将单元空间定义为不规则地理对象的集合,其中每个单元表示一个不规则地理实体。一个单元的邻域定义为一组影响目标单元状态变化的邻近单元(Moreno et al., 2008)。对于地块逐渐从一种类型过渡到另一种类型的情况,提出了DLPS-VCA模型(Yao et al., 2017)。DLPS-VCA使用动态地块分割方法,将土地分块划分为更小的基本单元,旨在更真实地模拟城市土地利用变化的渐变和碎片化过程。一些学者采用聚类技术对城市空间结构进行分类,并结合局部邻域效应和环境影响,探索了不同类型区域的土地利用过渡模式,构建了基于分区的VCA模型,取得了良好的结果(Yang et al., 2023)。

在VCA模型中,地块的土地利用转移概率通常由四个组件组成:环境驱动效应、邻域效应、约束和随机因素(Li and Yeh, 2002)。环境驱动效应指的是环境驱动因素(如地形特征、位置条件和社会经济条件)对地块内部土地利用转换的影响。邻域效应指的是周围地块对中心地块土地利用变化的影响。约束表示对特定地块某些土地利用转换的禁止。随机因素用于反映复杂城市系统发展过程中的随机性(Li et al., 2008)。

研究人员已经对上述组件进行了研究。研究评估并比较了不同邻域设置下的模拟精度(Stevens and Dragicevic, 2007)。为解决邻域的敏感性问题,研究人员开发了30种不同的矢量元胞邻域结构,基于类型和大小(Dahal and Chow, 2015)。Liang等(2018)基于各种类型单元的比例、邻域丰富度和景观模式指标计算了邻域效应。针对约束问题,Yu等(2011)将社会经济、人口和土地管理因素作为约束变量。Lauf等(2012)将家庭和住房因素作为约束变量。Yao等(2017)引入了一些自然元素作为约束。

环境驱动效应的计算依赖于探索驱动因素与土地利用类型/变化之间的复杂非线性关系。人工智能(AI)算法具有适应性、自学习和自组织等特性,使其特别适合处理非线性和复杂问题。许多学者在CA模型中应用了各种AI算法,以揭示驱动因素对土地利用变化的影响机制。典型的例子包括随机森林(RF)(Kamusoko and Gamba, 2015; Liang et al., 2021a,b; Lv et al., 2021)、支持向量机(SVM)(Feng et al., 2016; Ren et al., 2019; Yang et al., 2008)、人工神经网络(ANN)(Li and Yeh, 2002; Pijanowski et al., 2002; Xu et al., 2019)、卷积神经网络(CNN)(Xing et al., 2020; Zhai et al., 2020)以及递归神经网络(RNN)。

然而,传统的VCA模型大多假设驱动因素在每个土地分块内均匀分布,使用平均值来表示土地分块特征。由于模型中使用的驱动因素数据基于不均匀分布的离散单元,使用平均值忽略了每个土地分块内部驱动因素的空间异质性。CNN-VCA(Zhai et al., 2020)通过利用空间连续的驱动因素栅格数据来解决这一限制。该模型使用卷积神经网络(CNN)提取每个单元中心周围一定面积内的驱动因素的空间分布特征及其与多种土地利用类型适宜性的关系,从而提高模拟精度。然而,CNN的感受野受限于卷积核的规则形状和大小,使其在提取VCA中不规则形状和大小单元内驱动因素的分布特征时效果不佳。

在邻域效应的计算中,大多数VCA模型采用邻近单元中土地利用类型的简单统计数据,如不同土地利用类型的数量和多样性(Guan et al., 2023; Kamusoko and Gamba, 2015),来估计邻近单元对中心单元土地利用变化的影响。然而,这种简单统计方法在全面捕捉细胞间相互作用机制方面存在局限,并且忽略了邻近单元内环境驱动因素对中心单元土地利用变化的影响。近年来,图神经网络(GNNs)因其能够捕捉多个实体(即图中的节点)之间的交互信息而被广泛应用于交互建模。

与传统机器学习方法相比,GNN在消息传递过程中引入了邻接矩阵,这描述了实体之间的空间关系(Gori et al., 2005; Scarselli et al., 2009)。在GNN中,每个节点根据其邻近节点的信息进行更新,以获得新的隐藏表示。消息传递过程通常包括两个步骤:消息聚合和消息更新。然而,早期的GNN模型存在计算效率低、迭代过程中参数共享以及学习边缘隐藏状态的困难等问题。为了解决这些挑战,图卷积网络(GCNs)(Kipf and Welling, 2016)将卷积操作扩展到图结构数据中,并取得了显著成功。为了为每个邻近节点分配不同的注意力分数,并识别更重要的邻居,图注意力网络(GAT)(Velikovi et al., 2017)在消息传递过程中引入了注意力机制,其中节点的隐藏状态通过计算其邻居的注意力分数来进行计算。

在HGAT-VCA(Guan et al., 2023)中,基于土地分块的邻接拓扑关系构建了图模型。该模型利用图注意力网络(GAT)揭示了土地分块内部的环境驱动机制以及邻近分块之间的相互作用机制。然而,与大多数先前的VCA模型类似,HGAT-VCA忽略了每个土地分块内部驱动因素的异质分布模式,假设每个分块内的驱动因素均匀分布。

基于上述现有研究的回顾,可以总结出当前研究中的几个问题:(1)大多数VCA模型在评估环境驱动效应时忽略了每个土地分块内部驱动因素的空间异质性;(2)在计算邻域效应时,常常使用邻近分块中的土地利用类型的简单统计数据,忽略了邻近分块内驱动因素对目标单元的影响;(3)探索土地分块之间相互作用的能力通常有限。

因此,需要一种方法,能够充分探索并利用驱动因素在土地分块内的不均匀分布对土地利用变化的影响,考虑其不同的形状和大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值