自定义loss

本文介绍了在PyTorch中如何为每个类别甚至每个样本赋予权重,以及在Keras中自定义复杂损失函数的方法。PyTorch的权重分配可以通过在损失函数中实现,而Keras则支持直接在损失函数中加入自定义逻辑,方便构建深度学习模型。此外,文章还探讨了Keras作为积木式框架的灵活性,支持多种后端,并提供了相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 (pytorch) 如何给每个类别甚至每个样本赋予权重

中文版本:https://www.jianshu.com/p/8c8169d2204c

英文:https://discuss.pytorch.org/t/per-class-and-per-sample-weighting/25530

2 Keras中自定义复杂的loss函数

Keras是一个搭积木式的深度学习框架(其他深度学习框架也是),用它可以很方便且直观地搭建一些常见的深度学习模型。在tensorflow出来之前,Keras就已经几乎是当时最火的深度学习框架,以theano为后端,而如今Keras已经同时支持四种后端:theano、tensorflow、cntk、mxnet。

https://www.cnblogs.com/think90/articles/11652213.html
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值