Pytorch实现之LSRGAN,轻量化SRGAN超分辨率SAR

简介

简介:在SRGAN的基础上设计了一个轻量化的SRGAN模型结构,通过DSConv+CA与残差结构的设计来减少参数量,同时利用SeLU激活函数构造。与多类SRGAN改进不同的是,很少使用BN层。

论文题目:Lightweight Super-Resolution Generative Adversarial Network for SAR Images(SAR图像的轻量级超分辨率生成对抗网络)

期刊:Remote sensing            (if = 4.2)

摘要:由于合成孔径雷达(SAR)独特的成像机制,其图像通常会出现退化现象。 为了提高图像质量和支持实时机载处理能力,我们提出了一种轻量级深度生成网络框架,即轻量级超分辨率生成对抗网络(LSRGAN)。 该方法在残差块中引入深度可分卷积(DSConv)对原始生成对抗网络(GAN)进行压缩,并利用SeLU激活函数构造适合SAR图像特征的轻量级残差模块(LRM)。 此

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值