EPGAN:融合高效注意力的生成对抗网络图像修复算法

简介

简介:利用掩码设计来遮掉输入图像的一部分,将这类图像输入给生成器。生成器结合ECA注意力机制架构,利用感知损失、对抗损失和均方误差损失的加权和来作为生成器的损失计算。鉴别器分别对应掩码和整张图做损失计算。

论文题目:融合高效注意力的生成对抗网络图像修复算法

期刊:沈阳工程学院学报(自然科学版) 

摘要:针对现有图像修复算法存在细节纹理结构还原效果不佳及修复区域与图像未缺损区域的视觉连通性较差的问题,提出了一种以双判别生成对抗网络为框架,融合高效通道注意力(ECA

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值