CAGAN训练自定义数据集完整教程

论文题目:Language-vision matching for text-to-image synthesis with context-aware GAN(基于上下文感知GAN的文本到图像合成的语言视觉匹配)

期刊:Expert Systems With Applications(ESWA)

摘要:文本到图像生成(T2I)旨在生成视觉上引人注目的图像,同时保持与文本描述的高度语义一致性。尽管现有的方法取得了令人印象深刻的进步,但仍然存在合成图像细节有限,提供的文本描述与生成图像之间相关性不足的问题。为了解决这些问题,我们提出了一个上下文感知生成对抗网络(CA-GAN),它生成与输入文本表示对齐的图像。具体而言,上下文感知块(CA-Block)学习基于文本样式的语义自适应转换,实现文本描述和图像特征的有效融合,从而生成具有更好语言视觉匹配的高质量图像。此外,我们提出了一个注意力卷积模块(ACM)来识别更有代表性的特征,并避免无法利用非本地上下文信息,这使我们的模型能够生成具有许多详细属性的图像,同时保持高质量和语义一致性。随后,我们将自注意力机制与卷积相结合,增强特征映射,强化鉴别器中的语义信息,强调关键特征通道,同时抑制无关信息,最终生成更详细、更丰富的图像。实验结果表明了该方法相对于SOTA方

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值