- 博客(20)
- 收藏
- 关注
原创 混合萤火虫和粒子群优化(HFPSO)(MATLAB代码0.1获取)
HFPSO算法的主要目标是通过多次迭代优化解的质量,找到最优的目标函数值。它结合了粒子群优化(PSO)算法的全局搜索能力和萤火虫算法的局部搜索能力。粒子群优化(PSO):PSO主要利用粒子的位置和速度来更新每个粒子的位置。每个粒子都有一个最佳位置(局部最优),以及一个全局最优的位置。萤火虫算法:利用萤火虫的吸引性原则进行搜索。萤火虫靠近目标时会有更高的亮度,而较远的萤火虫会被更吸引,因此通过这种吸引力更新位置。
2025-02-06 16:11:42
631
原创 双向RRT融合DWA算法无人船路径规划(附MATLAB源代码)
在无人水面船(USV)路径规划问题中,如何在复杂且动态的海洋环境中确保USV的路径既安全又高效是一个关键挑战。本文提出了一种改进的双向RRT(Bi-RRT)算法与动态窗口法(DWA)融合的混合路径规划算法——
2025-02-02 19:12:29
1471
原创 【船舶原理】高分学霸带你掌握核心知识 | 大连海事大学研究生出品
大家好,我是大连海事大学的研究生,在专业课考试中取得了的高分,并在考研初试中获得的优异成绩。凭借丰富的学习经验和扎实的专业基础,我制作了这套,希望帮助更多同学高效掌握核心知识,顺利通过考试!本课程不仅涵盖船舶原理的核心知识,还结合实际应用,帮助大家建立完整的知识体系。同时,每章都配备了,确保你能够深入理解并学以致用。
2025-01-29 18:39:32
738
原创 A*算法与人工势场法结合的路径规划(附MATLAB源码)
地图初始化与绘制定义一个20*20的栅格地图,加载地图数据并标记障碍物、起点和终点。A*算法实现计算起点到终点的初步路径,储存路径点及其代价。人工势场法路径优化基于A*生成的路径,结合动态障碍物的位置调整路径。可视化与性能评估动态显示路径规划过程,计算路径长度与规划时间。本文通过将A*算法与人工势场法相结合,解决了路径规划中的全局与局部优化问题。代码不仅实现了基本功能,还加入了动态障碍物处理及路径平滑优化。未来可以尝试改进势场函数或引入机器学习方法进一步提升性能。
2025-01-01 14:13:14
2195
1
原创 欠驱动船舶路径跟踪控制(附MATLAB代码)
这套算法,通过创新的HLOS导引律、有限时间控制器和精确的干扰观测,解决了欠驱动船舶路径跟踪中的关键难题。
2024-12-23 20:04:41
1323
原创 欠驱动船舶的自适应神经跟踪控制(附MATLAB代码)
这篇论文的研究成果为智能船舶控制提供了革命性的解决方案。通过结合自适应神经网络、动态表面控制和干扰观测器,论文解决了欠驱动、建模不确定性和外界干扰等核心问题。未来,这项技术可以进一步应用于无人船群、深海探测等领域,助力海洋技术迈向智能化新时代。让我们共同期待自适应神经控制技术在海洋应用中的无限可能!希望这篇博客能够让您对这项研究有更加直观的理解。如果有更多问题或建议,欢迎留言交流!
2024-12-20 14:19:25
978
原创 求解多目标优化问题的粒子群优化(PSO)算法(MATLAB源代码)
代码这段代码实现了一个用于求解多目标优化问题的粒子群优化(PSO)算法。它的目标是优化物品的选择,使其在一定的重量限制下,最大化价值(P)和体积(RPRCdata。
2024-11-21 12:46:30
758
原创 PSO融合DWA路径规划(附MATLAB源代码)
PSO(粒子群优化算法)和DWA(动态窗口法)是路径规划领域常用的两种算法,它们结合使用可以充分发挥各自的优势,实现高效且安全的机器人路径规划。
2024-11-17 15:17:24
840
原创 船舶AIS轨迹聚类算法(附python源码)
船舶轨迹聚类算法用于分析海上航行的船舶轨迹数据,通过聚类分析不同船舶的航行路线、模式以及可能的异常行为。这类算法可以帮助海事管理部门优化航线、监控船舶活动,以及预测潜在的航行风险。
2024-11-09 21:36:53
2111
原创 这就是程序员的职业素养
虽然当时的工作并不涉及这门语言,但我对它的高性能和安全性产生了浓厚兴趣。不久之后,公司启动了一个对性能要求极高的新项目,我主动提出使用Rust,并成功说服团队采纳这一方案。这段经历让我深刻体会到,持续学习不仅是个人进步的关键,也是推动团队和公司发展的动力。在我职业生涯的早期,我曾参与一个重要的金融系统开发项目。这段经历让我深刻体会到,专业精神不仅是对工作的认真负责,更是对自我能力的不断挑战和提升。这次经历让我意识到,主动沟通和清晰表达不仅能解决当前的问题,还能避免未来的误解和冲突。
2024-06-10 18:34:07
282
1
原创 多A*算法路径规划(附MATLAB代码)
A*算法是一种常用的寻路算法,被广泛应用于人工智能和游戏开发中。该算法通过评估每个节点的代价和启发式函数来找到最佳路径。在这篇博文中,我们将深入探讨A*算法的原理。A*算法的核心思想是在搜索过程中综合考虑两个因素:已经花费的代价和还需要花费的代价。具体而言,A*算法通过计算每个节点的综合评估函数f(n)来确定下一个最优的节点进行探索。其中,f(n)的计算方式为:f(n) = g(n) + h(n)其中,g(n)表示从起始节点到当前节点的实际代价,h(n)表示从当前节点到目标节点的估计代价。通过计算f(n),
2024-05-29 20:56:54
1358
原创 蚁群算法解决旅行商问题(附MATLAB代码)
函数生成包含坐标和距离矩阵的模型。是计算旅行路径长度的函数。nVar是问题的变量数量(即城市数量)。
2024-05-27 15:06:18
1764
原创 PCA主层次分析代码实现(附MATLAB代码)
主成分分析是一种强大的工具,广泛应用于数据降维、特征提取、数据压缩和可视化。通过将高维数据投影到较低维度空间,PCA能够揭示数据的内在结构,同时保留尽可能多的信息。
2024-05-27 14:12:51
1017
原创 PSO算法路径规划(附MATLAB代码)
一种启发式优化算法,灵感来源于鸟群或鱼群等群体智能行为的模拟。PSO算法最早由Kennedy和Eberhart于1995年提出,通常用于解决搜索空间连续、高维的优化问题。PSO算法模拟了鸟群中鸟类搜索食物的行为。在PSO算法中,候选解称为粒子,每个粒子通过搜索空间中移动来寻找最优解。每个粒子都有自己的位置和速度,同时记录了自己历史搜索到的最佳位置。粒子之间通过分享信息来引导搜索,即根据自身经验和群体经验调整自己的位置和速度。
2024-05-25 21:43:58
3882
原创 B样条 (折线路径平滑处理)(附MATLAB代码)
总的来说,这段代码实现了三次样条插值的计算过程,从确定插值节点到计算插值结果,最后绘制出了插值曲线。代码中的Bbase包。
2024-04-28 20:24:11
1124
原创 船舶路径规划,符合避碰规则(4)(附MATLAB代码)
智能船舶自主避碰算法的测试方法主要分为仿真测试和实地测试两种。具体的测试方法包括:1. 仿真测试:利用船舶仿真软件,如MATLAB/Simulink等,模拟船舶运动和环境情况,进行虚拟的船舶自主避碰算法测试。仿真测试具有成本低、安全可控、重复性好等优点。2. 实地测试:在实际海上环境中搭建测试场景,通过安装传感器、搭建通信系统等手段,对船舶自主避碰算法进行实地测试。实地测试能够真实地反映算法的性能,但成本较高、难度较大。
2024-04-28 14:52:09
2352
1
原创 RRT算法优化(3)
RRT算法(Rapidly-exploring Random Tree)是一种用于路径规划的算法,旨在快速生成连续空间中的随机样本,以探索未知环境并找到最佳路径。该算法最初由Steven M. LaValle于1998年提出,被广泛应用于机器人领域、自动驾驶和虚拟现实等领域。RRT算法的核心思想是通过不断扩展树结构来探索搜索空间。算法从起始状态开始,每次随机生成一个点,并找到树中最接近的节点,然后沿着这个方向扩展树。通过不断重复这个过程,最终可以找到一条连接起始状态和目标状态的路径。
2024-04-28 10:23:15
1270
原创 双向RRT算法(1)
双向RRT算法是在传统RRT算法的基础上发展而来的,它同时从起始点和目标点开始搜索,最终将两条路径连接起来。总的来说,双向RRT算法是一种高效的路径规划算法,它能够在短时间内找到一条最优路径,并且具有较高的成功率。双向RRT算法的基本思想是将搜索空间分为两部分,分别从起始点和目标点开始搜索,直到两个搜索树相交。在搜索过程中,两个树会不断扩展和连接,直到找到一条连接起始点和目标点的路径。双向RRT算法是一种用于路径规划的高效算法,它能够在短时间内找到一条可行路径,并且具有较高的成功率。
2024-04-26 10:41:32
934
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人