cartographer <<code exploration>>

资源下载链接为: https://pan.quark.cn/s/00cceecb854d 这个项目名为“mnist-nnet-hls-zynq7020-fpga prj”,是一个与机器学习相关的工程,专注于利用高级综合(HLS)技术将针对MNIST数据集设计的神经网络(nnet)实现在Zynq 7020 FPGA平台上,以加速图像识别任务。项目提供的压缩包包含所有相关代码文件,如C/C++源码、HLS接口定义、Vivado HLS项目文件、硬件描述语言代码(Verilog或VHDL)及配置文件等,用户可通过这些代码理解、实现或修改设计流程。 项目标签“mnist-nnet-hls-z”进一步明确了其关注点:MNIST数据集、HLS技术以及Zynq目标平台。MNIST是用于手写数字识别的知名训练数据集;HLS可将高级编程语言转化为硬件描述语言;Zynq 7020是Xilinx的SoC FPGA,融合了ARM处理器与可编程逻辑。文件名中提到的“vivado”指的是Xilinx的Vivado设计套件,它是一个用于FPGA设计、实现、仿真和调试的集成开发环境,其中的Vivado HLS工具能够将C、C++或SystemC编写的算法自动转换为硬件描述语言代码。 项目可能的实施步骤如下:首先,对MNIST数据集进行预处理,如归一化、降维等,使其适配神经网络模型输入;其次,构建适用于手写数字识别的神经网络模型,例如卷积神经网络(CNN)或全连接网络(FCN);接着,运用HLS工具将神经网络模型转化为硬件描述,并优化性能与资源利用率;然后,在Vivado环境中,将生成的硬件描述代码映射到Zynq 7020的FPGA部分,进行时序分析与综合优化;此外,由于Zynq是SoC,包含处理器系统,还需编写控制软件来管理与调度FPGA上的硬件加速器,可能涉及OpenCV、OpenCL等库的使用;之后,
<?xml version="1.0"?> <launch> <!-- Webots机器人建图启动文件 优化内容: 1. 激光雷达数据深度预处理(多层滤波) 2. Gmapping参数全面优化(提升地图精度与清晰度) 3. 运动控制平滑处理(减少运动模糊) 4. 增加TF静态变换(确保坐标系正确) 5. 强化RViz可视化配置(突出地图线条) --> <!-- 基础参数配置 --> <arg name="laser_topic" default="/robot/Sick_LMS_291/laser_scan/layer0" /> <arg name="filtered_laser_topic" default="/scan_filtered" /> <arg name="rviz_config" default="$(find webots_demo)/rviz/robot_gmapping_optimized.rviz" /> <!-- 静态TF变换 (根据实际机器人结构调整) --> <node pkg="tf" type="static_transform_publisher" name="base_to_laser" args="0.2 0 0.15 0 0 0 base_link laser 100" /> <node pkg="tf" type="static_transform_publisher" name="base_to_imu" args="0 0 0.1 0 0 0 base_link imu 100" /> <node pkg="tf" type="static_transform_publisher" name="odom_to_map" args="0 0 0 0 0 0 map odom 100" /> <!-- 新增:确保map与odom初始对齐 --> <!-- 激光雷达数据预处理(多层滤波) --> <node pkg="laser_filters" type="scan_to_scan_filter_chain" name="laser_filter"> <rosparam command="load" file="$(find webots_demo)/config/laser_filter.yaml" /> <remap from="scan" to="$(arg laser_topic)" /> <remap from="scan_filtered" to="$(arg filtered_laser_topic)" /> </node> <!-- 优化后的Gmapping节点(核心优化) --> <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen"> <!-- 基础框架设置 --> <param name="odom_frame" value="odom" /> <param name="base_frame" value="base_link" /> <param name="map_frame" value="map" /> <param name="map_update_interval" value="0.5" /> <!-- 加快地图更新频率 --> <!-- 激光参数(强化精度与抗干扰) --> <param name="maxRange" value="4.0" /> <!-- 降低最大范围,避免噪声 --> <param name="maxUrange" value="3.8" /> <!-- 与maxRange接近,减少无效数据 --> <param name="sigma" value="0.03" /> <!-- 降低激光噪声权重 --> <param name="kernelSize" value="1" /> <!-- 保持边缘清晰度 --> <param name="lskip" value="0" /> <!-- 不跳过激光点,提高密度 --> <!-- 运动模型参数(根据实际机器人调整) --> <param name="srr" value="0.05" /> <!-- 线速度噪声参数 --> <param name="srt" value="0.1" /> <!-- 线速度->角速度噪声参数 --> <param name="str" value="0.05" /> <!-- 角速度->线速度噪声参数 --> <param name="stt" value="0.1" /> <!-- 角速度噪声参数 --> <!-- 地图更新策略(更频繁地更新以捕捉细节) --> <param name="linearUpdate" value="0.1" /> <!-- 每移动0.1m更新地图 --> <param name="angularUpdate" value="0.05" /> <!-- 每旋转5°更新地图 --> <param name="temporalUpdate" value="1.0" /> <!-- 最大更新间隔1秒 --> <!-- 地图参数(提升分辨率与细节) --> <param name="delta" value="0.02" /> <!-- 地图分辨率2cm,提升清晰度 --> <param name="llsamplerange" value="0.01" /> <!-- 低采样范围,强化局部匹配 --> <param name="llsamplestep" value="0.01" /> <!-- 低采样步长 --> <param name="lasamplerange" value="0.005" /> <!-- 激光角度采样范围 --> <param name="lasamplestep" value="0.005" /> <!-- 激光角度采样步长 --> <!-- 粒子滤波参数(平衡精度与性能) --> <param name="particles" value="100" /> <!-- 增加粒子数提高稳定性 --> <param name="xmin" value="-15.0" /> <!-- 缩小初始地图范围 --> <param name="ymin" value="-15.0" /> <param name="xmax" value="15.0" /> <param name="ymax" value="15.0" /> <!-- 强化地图质量参数 --> <param name="minimumScore" value="70" /> <!-- 提高匹配分数阈值 --> <param name="linearThreshold" value="0.01" /> <!-- 线性移动阈值 --> <param name="angularThreshold" value="0.01" /> <!-- 角度旋转阈值 --> <param name="occ_thresh" value="0.65" /> <!-- 占用阈值,提高地图对比度 --> <remap from="scan" to="$(arg filtered_laser_topic)" /> </node> <!-- 机器人控制节点(平滑运动控制) --> <node name="robot_broadcaster" pkg="webots_demo" type="robot_broadcaster_gmapping" /> <node name="velocity_controller" pkg="webots_demo" type="key_smooth.py" output="screen"> <param name="max_linear" value="0.3" /> <!-- 降低最大线速度,减少运动模糊 --> <param name="max_angular" value="0.2" /> <!-- 降低最大角速度 --> <param name="accel_lim_x" value="0.2" /> <!-- 线加速度限制 --> <param name="accel_lim_theta" value="0.3" /> <!-- 角加速度限制 --> </node> <!-- RViz可视化(优化显示参数) --> <node name="rviz" pkg="rviz" type="rviz" args="-d $(arg rviz_config)" output="log"> <remap from="/move_base_simple/goal" to="/move_base_simple/goal_temp" /> <!-- 启动时自动加载优化后的RViz配置 --> </node> <!-- 保存地图服务 --> <node name="map_saver" pkg="map_server" type="map_saver" args="-f $(find webots_demo)/maps/current_map" output="screen"> <remap from="map" to="/map" /> </node> <!-- 调试工具(可选,取消注释使用) --> <!-- <node pkg="tf" type="view_frames" name="view_frames" /> --> <!-- <node pkg="rqt_graph" type="rqt_graph" name="rqt_graph" /> --> </launch>这个rviz建图的效果能不能让线条明显一点,效果更好一点
06-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值