class type costmap_2d::Layer does not exist

wiki原文
将超声波加入局部costmap时报错,执行以下命令成功解除错误。

# 本人ros版本为melodic,请改为与自己对应的版本。
sudo apt-get install ros-melodic-range-sensor-layer
### PyTorch Padding Usage and Examples Padding is an essential operation when working with convolutional neural networks (CNNs) to ensure that the spatial dimensions of feature maps remain consistent or are adjusted as required. In PyTorch, padding can be applied through various methods depending on where it's needed. #### Using `nn.Conv2d` Layer With Built-in Padding The simplest way to apply padding is by specifying a padding parameter within layers such as `Conv2d`. This method automatically adds zeros around the borders of the input tensor before performing convolutions: ```python import torch.nn as nn conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1) ``` This example sets up a 2D convolution layer with a single-pixel wide zero-padding added all around the edges[^1]. #### Functional Approach via `F.pad()` For more control over how padding should occur, one may use functional utilities provided under `torch.nn.functional`, specifically `pad()` function which allows customizing not only the size but also type of padding used: ```python from torch import Tensor import torch.nn.functional as F input_tensor: Tensor = ... # Your input data here padded_tensor = F.pad(input=input_tensor, pad=(0, 0, 1, 1), mode='constant', value=0.) ``` In this snippet, padding has been specified explicitly for each dimension; note that values must appear in pairs representing start/end paddings respectively along axes starting from last moving towards first. Here we add one row at top/bottom while leaving columns untouched. #### Custom Padding Layers Beyond built-ins, developers have flexibility creating specialized classes inheriting from base class `Module` offered by PyTorch framework itself allowing implementation-specific behaviors including non-zero constant fillers among other possibilities: ```python class ReflectionPad(nn.Module): def __init__(self, padding): super().__init__() self.padding = padding def forward(self, x): return F.pad(x, tuple([item for sublist in zip(*[(i,i)*2 for i in reversed(self.padding)]) for item in sublist]), 'reflect') ``` Here reflection-based padding logic implemented demonstrates extending core functionalities beyond what’s readily available within standard library offerings. --related questions-- 1. How does padding affect the output shape of CNN layers? 2. What types of padding modes exist besides 'constant' in PyTorch? 3. Can you provide scenarios where different kinds of padding would be beneficial during model training?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值