Ubuntu本地部署网站

目录

1.介绍

2.安装apache

3.网页升级


1.介绍

        网站其实就相当于一个文件夹,用域名访问一个网页,就相当于访问了一台电脑的某一个文件夹,在网页中看见的视频,视频和音乐其实就是文件夹里面的文件。为什么网页看起来不像电脑文件夹里面的方方正正小文件一样刻板呢?这是因为一个叫html的管家把文件夹给整理了一下,并且用css把这里装扮了一番。

        本文就用ubuntu进行演示教你如何快速并且简单的搭建一个自己的小网页。

2.安装apache

        apach2是一个服务,也可以看做一个容器,也就是上面说的房子,运行在ubuntu里,这个服务可以帮助我们把我们自己的网站页面通过相应的端口让除本机以外的其他电脑访问。

在终端运行下面的命令安装apache

sudo apt install apache2 php -y

 

下载好后启动apache2

sudo service apache2 restart

 

然后打开浏览器,输入:http://localhost 即可看到我们apache 默认的页面,此时说明本地站点已经搭建好了。

<think>好的,我现在需要在Ubuntu系统上部署Xinference。首先,我需要了解用户的问题是什么。用户询问的是如何在Ubuntu本地环境中部署和配置Xinference。根据提供的引用内容,特别是引用[1]和引用[2],里面提到了两种方法:一种是使用Conda环境通过pip安装,另一种是使用Docker容器部署。我需要结合这些信息来给出步骤。 首先,我应该先确定用户可能需要的两种方式,本地安装和Docker部署。然后,按照步骤分点说明。需要检查用户是否有NVIDIA显卡,是否需要GPU支持,因为引用[1]里提到了安装依赖可能需要CUDA,而引用[2]里的Docker命令使用了--gpus all。因此,显卡驱动和CUDA环境可能是必要的。 然后,引用[1]中的步骤提到了使用Conda环境进入代码目录,安装依赖。这里可能需要先安装Git,克隆仓库,创建Conda环境,安装依赖。但用户的问题是关于部署Xinference,而引用[1]中的示例是安装Xinference的依赖,可能用户需要的是直接安装Xinference而不是从源码安装?或者可能用户需要从源码安装? 另外,引用[4]提到了启动Xinference服务的gitee链接,可能里面有一些额外的配置步骤,但用户给出的引用中没有详细内容。需要根据现有的引用整理步骤。 可能的步骤分为: 1. 环境准备:安装Git、Conda、NVIDIA驱动、CUDA。 2. 本地安装:使用Conda创建环境,安装Xinference。 3. Docker方式:安装Docker,拉取镜像,运行容器。 4. 启动服务并验证。 需要确保每一步都正确,比如在本地安装中,是否需要从GitHub克隆代码,或者是否可以直接通过pip安装。根据引用[1],用户可能是在克隆的代码目录中安装,但Xinference是否可以直接通过pip安装?例如,引用[1]中提到了pip install "xinference[all]",所以可能用户可以直接安装,而不需要克隆代码?或者是否需要先克隆特定的仓库? 可能需要澄清,但根据用户提供的引用[1],示例中的命令是在克隆的代码目录下执行的,但同时也引用了Xinference入门指南。可能正确的步骤是: 本地部署步骤: - 安装依赖:Git、Python、Conda。 - 创建Conda环境。 - 安装Xinference的依赖,通过pip install "xinference[all]"。 - 启动服务:xinference-local -H 0.0.0.0。 而Docker部署步骤: - 安装Docker和NVIDIA容器工具。 - 拉取镜像并运行。 另外,用户可能需要知道如何验证安装是否成功,比如访问端口或使用命令行检查。 需要注意的是,用户可能遇到的常见问题,比如权限问题,端口冲突,或者CUDA版本不兼容。比如引用[3]中提到了CUDA Version12.2,而用户需要确保他们的CUDA版本是否兼容。 最后,生成相关问题,比如如何配置模型,如何处理依赖冲突,或者如何扩展服务等。</think>### Ubuntu本地部署Xinference的步骤 #### 一、环境准备 1. **安装系统依赖** ```bash sudo apt update && sudo apt install -y git curl ``` 2. **配置NVIDIA驱动(仅GPU环境需要)** 验证驱动是否已安装: ```bash nvidia-smi # 显示GPU信息表示驱动正常[^3] ``` 若无输出,需通过`ubuntu-drivers devices`安装推荐驱动。 3. **安装CUDA Toolkit(GPU加速必需)** 参考NVIDIA官方文档安装与显卡驱动匹配的CUDA版本。 --- #### 二、本地部署方式(Conda环境) 1. **克隆Xinference仓库** ```bash git clone https://github.com/xorbitsai/inference.git cd inference ``` 2. **创建并激活Conda环境** ```bash conda create -n xinference python=3.9 conda activate xinference ``` 3. **安装依赖(选择全量安装或指定模块)** ```bash pip install "xinference[all]" # 全量安装支持CPU/GPU[^1] ``` 若仅需CPU版本: ```bash pip install xinference ``` 4. **启动服务** ```bash xinference-local -H 0.0.0.0 --port 9997 ``` 默认端口`9997`,浏览器访问`http://IP:9997`进入控制台[^4]。 --- #### 三、Docker部署方式(推荐隔离环境) 1. **安装Docker和NVIDIA Container Toolkit** ```bash sudo apt install docker.io curl -s -L https://nvidia.github.io/nvidia-container-runtime/gpgkey | sudo apt-key add - distribution=$(. /etc/os-release;echo $ID$VERSION_ID) curl -s -L https://nvidia.github.io/nvidia-container-runtime/$distribution/nvidia-container-runtime.list | sudo tee /etc/apt/sources.list.d/nvidia-container-runtime.list sudo apt update && sudo apt install -y nvidia-container-runtime ``` 2. **拉取镜像并启动容器** ```bash docker pull xprobe/xinference:latest docker run -d --gpus all -p 9997:9997 xprobe/xinference:latest xinference-local -H 0.0.0.0[^2] ``` --- #### 四、验证部署 1. **命令行测试** ```bash curl http://localhost:9997/status ``` 返回JSON状态表示服务正常。 2. **Web控制台** 访问`http://服务器IP:9997`,上传模型并启动推理任务。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值