目录
1.生成对抗网络介绍
生成对抗网络(Generative Adversarial Network,简称GAN)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN的核心思想是通过两个神经网络——生成器(Generator)和判别器(Discriminator)之间的对抗训练,生成逼真的数据样本。
2.网络结构
GAN由两个主要部分组成:
-
生成器(Generator,G):它的目标是从随机噪声(通常是高斯分布)中生成尽可能接近真实数据的样本。例如,生成器可以生成逼真的图像、音频或文本。
-
判别器(Discriminator,D):它的目标是区分生成器生成的假样本和真实数据样本。判别器通常是一个二分类器,输出一个概率值,表示输入样本是真实数据的概率。
在训练过程中,生成器和判别器相互对抗:
-
生成器努力生成越来越逼真的样本,以“欺骗”判别器。
-
判别器则努力提高自己的能力,以正确区分真假样本。