图解生成对抗网络(GAN)

目录

1.生成对抗网络介绍

2.网络结构

3.模型工作示例

 4.总结


1.生成对抗网络介绍

生成对抗网络(Generative Adversarial Network,简称GAN)是一种深度学习模型,由Ian Goodfellow等人在2014年提出。GAN的核心思想是通过两个神经网络——生成器(Generator)和判别器(Discriminator)之间的对抗训练,生成逼真的数据样本。

2.网络结构

GAN由两个主要部分组成:

  • 生成器(Generator,G):它的目标是从随机噪声(通常是高斯分布)中生成尽可能接近真实数据的样本。例如,生成器可以生成逼真的图像、音频或文本。

  • 判别器(Discriminator,D):它的目标是区分生成器生成的假样本和真实数据样本。判别器通常是一个二分类器,输出一个概率值,表示输入样本是真实数据的概率。

在训练过程中,生成器和判别器相互对抗:

  • 生成器努力生成越来越逼真的样本,以“欺骗”判别器。

  • 判别器则努力提高自己的能力,以正确区分真假样本。

### 图像生成对抗网络GAN)工作原理与架构图解 #### GAN基本概念 生成对抗网络GANs),作为一种强大的生成模型,可以通过生成器和判别器之间的竞争机制来创建逼真的新图像[^1]。 #### GAN核心组件 GAN主要由两大部分组成: - **生成器(Generator)** - 接收随机噪声作为输入。 - 输出尽可能接近真实样本分布的新数据实例。 - **判别器(Discriminator)** - 输入既可以来自真实的训练集也可以是由生成器产生的假样本。 - 目标是区分这些输入到底是真是假,并给出相应的概率估计值。 两者之间形成了一种“猫鼠游戏”,其中生成器试图欺骗判别器相信其制造出来的伪像是真实的;而判别器则努力提高自己识别真假的能力。随着迭代次数增加,理想情况下最终达到纳什均衡状态——此时即使是最优秀的判别者也无法再分辨出哪些图片是真的哪些又是伪造的了[^2]。 #### StyleGAN特殊结构解析 对于更复杂的变体如StyleGAN而言,在传统基础上引入了一些改进措施以提升性能表现: - **映射网络(Mapping Network)** - 将原始隐向量\(z\)转化为中间表示形式\(w\),以便更好地分离样式特征并允许更加灵活地操控所要生成对象的具体外观属性[^3]. - **合成网络(Synthesis Network)** - 利用了上述提到过的经过处理后的参数去指导各层次卷积操作过程中如何具体呈现目标物体的不同方面特性; - 同时加入额外扰动项确保输出多样性而不至于过分单调重复。 这种设计不仅使得模型具备更强表达力同时也方便后续应用阶段针对特定需求做定制化调整优化。 ```mermaid graph LR; subgraph Generator Z([Noise Vector]) -->|Input| MappingNetwork(Mapping Network) MappingNetwork --> W([Intermediate Variable]) W --> SynthesisNetwork(Synthesis Network) SynthesisNetwork --> FakeImage([Generated Image]) end subgraph Discriminator RealImage([Real Image]) & FakeImage --> D(Discriminator) D --> Output([Probability of being real]) end ``` 该图表展示了标准GAN框架以及StyleGAN特有模块间的相互关系,有助于理解这类算法内部运作流程及其独特之处。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值