目录
1.介绍
PINN 是“Physics-Informed Neural Networks”(物理信息神经网络)的缩写,是一种结合了深度学习和物理知识的机器学习模型,主要用于求解偏微分方程(PDE)和常微分方程(ODE)。
2.模型核心
核心思想是将物理定律(如偏微分方程、守恒定律等)直接嵌入神经网络的损失函数中,使网络在训练过程中不仅依赖数据,还遵循物理规律。通过这种方式,PINN 可以在数据稀缺的情况下进行有效的学习和预测。
3.工作示例
在流体动力学中,纳维-斯托克斯方程(Navier-Stokes equations)是描述流体运动的核心偏微分方程。这些方程非常复杂,传统数值方法在处理复杂边界条件或非线性现象时往往面临挑战。PINN 提供了一种新的解决方案,通过将纳维-斯托克斯方程嵌入神经网络的损失函数中,实现对流体流动的高效模拟和预测。
4.总结
PINN可以减少训练模型对数据的依赖,提高模型的泛化能力,能够处理复杂或数据稀缺的问题。但是由于加入了很多的物理公式,会出现计算高阶导数的计算成本较高,难以学习高频和多尺度的难题。