力扣120. 三角形最小路径和(Java 动态规划)

本文介绍了如何通过动态规划算法解决最小路径和问题,针对64号问题进行改编,详细解释了思路、转移方程的制定、特殊边界条件的处理以及计算复杂度,并给出了Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem: 120. 三角形最小路径和

题目描述

在这里插入图片描述在这里插入图片描述

思路

Problem:64. 最小路径和

本题目可以看作是在上述题目的基础上改编而来,具体的思路:

1.记录一个int类型的大小的 n 乘 n n乘n nn的数组(其中 n n n为数组triangle的行数)用于记录每一个当前阶段的最小路径和
2.大体上可以依据题意得出动态转移方程为dp[i][j] = Math.min(dp[i - 1][j - 1], dp[i - 1][j]) + triangle.get(i).get(j);(其中i与j为遍历数组时的下标)即当前位置的最小路径和为其相邻左侧位置和左上方位置中的最小值加上数组triangle当前位置的值;
3.我们需要单独处理dp数组的第一列和dp
主对角线位置的值(由于dp可以看作为一个方阵,主对角线即为下标(i,i)位置的值)
:第一列依次向下累加;主对角线位置沿主对角线向下累加
3.我们仔细思考便可注意到,由于我们需要对主对角线的元素做一个单独的处理,而该处理会使得dp数组中最后一个位置不一定是最小路径和!!!(我们很容易想到,由于本题目是在求取三角形最小路径和因为我们在单独处理主对角线时不是由其相邻的正上方与正左侧共同得出所以在往下的动态转移过程中就不能确保当前位置就是当前整个决策阶段的最小值,但是我们可以得出对于整个阶段的最小值是存在于dp数组的最后一行的)所以我们求出dp数组中最后一行的最小值,即为给定三角形的最小路径和

解题方法

1.得出数组triangle的大小int n = triangle.size();;并定义int数组dp大小为 n 行 n 列 n行n列 nn
2.初始化dp数组第1行第1列位置(索引下标为(0,0))的值dp[0][0] = triangle.get(0).get(0);
3.从dp数组第二行开始执行动态转移方程,同时处理第一列和dp主对角线位置的值
4.求取dp数组最后一行的最小值并返回。

复杂度

时间复杂度:

O ( N × N ) O(N\times N) O(N×N)其中 N N N为数组triangle的大小

空间复杂度:

O ( N × N ) O(N\times N) O(N×N)

Code

class Solution {
    /**
     * The minimum path sum of triangles is obtained by dynamic programming
     * @param triangle Given martix
     * @return int
     */
    public int minimumTotal(List<List<Integer>> triangle) {
        int n = triangle.size();
        //Record the sum of the shortest paths
        int[][] dp = new int[n][n];
        dp[0][0] = triangle.get(0).get(0);
        for (int i = 1; i < n; ++i) {
            //Handle the Column 0
            dp[i][0] = dp[i - 1][0] + triangle.get(i).get(0);
            for (int j = 1; j < i; ++j) {
                dp[i][j] = Math.min(dp[i - 1][j - 1], dp[i - 1][j]) + triangle.get(i).get(j);
            }
            //Dispose of (i, i)
            dp[i][i] = dp[i - 1][i - 1] + triangle.get(i).get(i);
        }
        int min = Integer.MAX_VALUE;
        for (int i = 0; i < n; ++i) {
            if (dp[n - 1][i] < min) {
                min = dp[n - 1][i];
            }
        }
        return min;
    }
}
### 解决方案 以下是基于给定引用内容以及专业知识设计的一个完整的 Java 实现来解决 LeetCode 第 125 题——验证回文串。 #### 方法概述 为了判断一个字符串是否为有效的回文串,可以采用双指针方法。该算法通过忽略非字母数字字符并比较两端的字符逐步向中心移动。如果整个过程中未发现不匹配的情况,则认为输入字符串是一个有效回文串[^3]。 下面是具体的代码实现: ```java class Solution { public boolean isPalindrome(String s) { if (s == null || s.isEmpty()) { // 如果字符串为空或者长度为零,返回true return true; } int left = 0; // 定义左指针 int right = s.length() - 1; // 定义右指针 while (left < right) { // 当左指针小于右指针时循环 char lChar = Character.toLowerCase(s.charAt(left)); // 获取左侧字符并转换成小写 char rChar = Character.toLowerCase(s.charAt(right)); // 获取右侧字符并转换成小写 if (!Character.isLetterOrDigit(lChar)) { // 跳过非字母数字字符 left++; continue; } if (!Character.isLetterOrDigit(rChar)) { // 同样跳过右侧的非字母数字字符 right--; continue; } if (lChar != rChar) { // 若两侧字符不同则不是回文串 return false; } left++; // 移动左右指针继续下一轮比较 right--; } return true; // 所有字符均匹配成功,返回true } } ``` 上述代码的时间复杂度为 O(n),其中 n 是字符串 `s` 的长度;空间复杂度为 O(1)[^3]。 --- ### 测试案例分析 对于测试用例 `"A man, a plan, a canal: Panama"`,程序会先移除所有的标点符号并将大写字母转为小写形式得到 `"amanaplanacanalpanama"`。接着利用双指针对比首尾字符直至中间位置无误后确认其为回文串[^4]。 而对于另一个例子如 `"race a car"` ,经过预处理后的结果将是 `"raceacar"` 。由于 'e' 'c' 不相等因此最终判定它不是一个合法的回文结构[^2]。 --- ### 注意事项 需要注意的是,在实际应用中可能会遇到极端情况比如超长字符串(最大可达 \(2 \times 10^5\)),所以要确保所选编程环境能够支持如此规模的数据操作而不至于引发性能瓶颈或内存溢出等问题。 此外还需注意边界条件处理,例如当传入空字符串或是仅含特殊符号的情形都应被正确识别为真值情形之一[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值