PyTorch深度学习实战(22)——从零开始实现YOLO目标检测

本文介绍了YOLO目标检测算法,包括其优于R-CNN的实时性,以及如何通过单次前向传递进行预测。详细阐述了YOLO的工作原理,涉及网格划分、标签创建和损失函数定义。还概述了实现YOLO模型的步骤,如DarkNet编译、数据集格式设置、网络架构配置和模型训练测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

YOLO (You Only Look Once) 是一种实时目标检测算法,它以其高效性和准确性而闻名。相比于传统的目标检测方法,YOLO 的主要特点是在单个前向传递中同时完成目标检测和分类,因此称为 You Only Look Once。由于整个检测过程只需要一次前向传递,因此非常高效,可以实现实时目标检测。此外,YOLO 通过全局感受野捕捉了整个图像中的上下文信息,对小尺寸物体的检测效果较好。在本节中,将介绍 YOLO 的工作原理,然后在自定义数据集上训练 YOLO 目标检测模型。

1. YOLO 架构

YOLO 目标检测模型与 Faster R-CNN 模型相比,YOLO 无需使用区域提议算法 (Region Proposal Network, RPN),其在单个神经网络中预测边界框和类别概率,因此推理效率更高。

1.1 R-CNN 目标检测模型的局限性

首先,我们了解基于 R-CNN 的目标检测算法的局限性。在 Faster R-C

### YOLO目标检测实战教程与示例项目 YOLO(You Only Look Once)作为一种高效的目标检测算法,在多个领域有着广泛的应用实例。对于希望深入了解并实践YOLO的人来说,存在丰富的资源可供学习。 #### 使用个人数据集训练YOLO模型 为了使YOLO能够识别特定场景下的对象,可以利用自定义的数据集来调整预训练好的网络权重。通过这种方式,不仅可以让YOLO适应新的类别,还能提高其在特定环境中的准确性[^2]。 ```python from yolov5 import train, val if __name__ == '__main__': # 训练参数设置 opt = { 'img-size': 640, 'batch-size': 16, 'epochs': 100, 'data': './custom_dataset.yaml', 'weights': 'yolov5s.pt' } # 开始训练过程 train.run(**opt) # 验证模型性能 val.run(data='./custom_dataset.yaml', weights='runs/train/exp/weights/best.pt') ``` #### PCB缺陷自动检测系统构建 针对工业制造行业的需求,基于YOLO开发了一套用于印刷电路板(PCB)表面组装技术(SMT)生产线上的元件缺失、焊膏不足等问题的自动化视觉检验方案。此案例展示了如何将深度学习应用于质量控制环节以提升生产效率和产品质量。 #### 数据集结构说明 当准备自己的数据集时,合理的文件夹布局有助于简化后续操作流程。下面是一个典型的数据集目录树形图表示法: - `./card_data`:作为整个项目的根目录; - 子文件夹`images/train`, `images/val`分别存放训练集图片路径列表以及验证集对应的图像位置信息;测试阶段可选加入相同模式下命名的子文件夹。 - YAML配置文档中需指定各个类别的标签名称及其索引编号映射关系表单[^3]。 ```yaml # card_data.yaml example configuration file for custom datasets. path: ./card_data/ train: images/train/ val: images/val/ names: 0: name 1: type 2: race 3: attr 4: lv ```
评论 97
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值