AIGC实战——StyleGAN(Style-Based Generative Adversarial Network)

本文深入介绍了StyleGAN架构,包括映射网络、合成网络、自适应实例归一化层和风格混合。StyleGAN通过在不同层注入风格向量实现了对图像特征的解耦控制。此外,还探讨了StyleGAN2的改进,如权重调制与解调、路径长度正则化,以及非渐进式增长策略,展示了StyleGAN2如何生成高质量图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

StyleGAN (Style-Based Generative Adversarial Network) 是于 2018 年提出的一种生成对抗网络 (Generative Adversarial Network, GAN) 架构,该架构建立在 ProGAN 基础之上。实际上,StyleGANProGAN 的判别器是相同的,只有生成器发生了变化。本节中,我们将介绍 StyleGAN (Style-Based Generative Adversarial Network) 架构。

1. StyleGAN

在训练生成对抗网络 (Generative Adversarial Network, GAN) 时,通常很难将潜空间中对应于高级属性的向量分离出来,它们通常融合在一起,这意味着虽然调整潜空间中的图像可以使人物具有金色的头发,但这也可能也会无意间改变背景颜色。虽然 ProGAN 能够生成极其逼真的图像,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值