图神经网络实战(12)——图同构网络(Graph Isomorphism Network, GIN)

本文介绍了图同构网络(GIN)的原理,其受Weisfeiler-Leman测试启发,具有更强的图结构区分能力。通过与GCN的性能比较,展示在图分类任务上的优势。文中详细阐述了如何构建GIN模型,并在PROTEINS数据集上执行图分类,结果显示GIN的准确率优于GCN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

Weisfeiler-Leman (WL) 测试提供了一个理解图神经网络 (Graph Neural Networks, GNN) 表达能力的框架,利用该框架我们比较了不同的 GNN 层,在本节中,我们将利用 WL 测试结果尝试设计比图卷积网络 (Graph Convolutional Network, GCN)图注意力网络 (Graph Attention Networks,GAT) GraphSAGE 更强大的 GNN 架构——图同构网络 (Graph Isomorphism Network, GIN)。然后,使用

### Graph Isomorphism Network (GIN) 的实现与应用 #### GIN 原理概述 Graph Isomorphism Network (GIN) 是一种用于处理图数据的深度学习模型,旨在通过对节点及其邻居特征进行聚合来学习更丰富的节点表示[^1]。这种机制使得 GIN 能够有效地捕捉到图中的复杂关系。 #### GIN 的表达能力 为了评估不同类型 GNN 层的表现力,研究者们引入了 Weisfeiler-Lehman (WL) 测试作为衡量标准之一。基于此框架的研究表明,相较于其他流行的 GNN 变体如 GCN、GAT 或 GraphSAGE,GIN 设计得更加具备表现力,能够在更多情况下区分不同的图结构[^3]。 #### 使用 PyTorch Geometric 实现 GIN 在实际编程环境中,可以通过 Python 库 `PyTorch` 结合专门针对图形数据优化过的扩展包 `PyTorch Geometric` 来快速搭建并训练 GIN 模型。下面给出一段简单的代码片段展示如何定义一个基本版本的 GIN: ```python from torch_geometric.nn import GINConv, global_add_pool import torch.nn.functional as F from torch.nn import Sequential, Linear, ReLU class SimpleGIN(torch.nn.Module): def __init__(self, input_dim, hidden_channels, output_dim): super(SimpleGIN, self).__init__() nn1 = Sequential(Linear(input_dim, hidden_channels), ReLU(), Linear(hidden_channels, hidden_channels)) self.conv1 = GINConv(nn=nn1) nn2 = Sequential(Linear(hidden_channels, hidden_channels), ReLU(), Linear(hidden_channels, output_dim)) self.conv2 = GINConv(nn=nn2) def forward(self, data): x, edge_index, batch = data.x, data.edge_index, data.batch # Node embeddings after first layer of convolution h1 = F.relu(self.conv1(x=x, edge_index=edge_index)) # Final node embeddings and graph-level readout/embedding via sum aggregation over nodes. out = global_add_pool(F.dropout(h1,p=0.5,training=self.training),batch=batch) out += F.relu(self.conv2(x=h1,edge_index=edge_index)) # Residual connection added here. return F.log_softmax(out,dim=-1) ``` 上述代码展示了构建两层 GIN 卷积操作的过程,并最终通过全局加权池化得到整个图级别的表征向量。值得注意的是,在最后一层加入了跳跃连接(residual connections),这有助于缓解深层网络可能出现的信息丢失问题。 #### 应用实例:PROTEINS 数据集上的图分类任务 当涉及到具体的下游应用场景时,比如生物信息学领域内的蛋白质相互作用预测等问题,则可以选择像 PROTEINS 这样的公开可用的数据集来进行实验验证。在这个过程中,除了调整超参数外,还可以探索不同类型的读出函数以及损失函数的选择对于性能的影响程度。
评论 106
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值