使用 DEAP 库实现遗传算法解决旅行商问题

使用 DEAP 库实现遗传算法解决旅行商问题

0. 前言

旅行商问题 (Traveling Salesman Problem, TSP) 是一个经典的优化问题,其目标是找到一条最短的路径,使得旅行商可以访问一系列给定的城市并且每个城市只访问一次,最终回到出发地点。在本节中,我们将学习如何使用遗传算法解决 TSP 问题。

1. 旅行商问题

旅行商问题 (Traveling Salesman Problem, TSP),又称旅行推销员问题、货郎担问题,是一个经典的数学优化问题。指一个旅行商从一个出发点出发,必须恰好访问一次每个给定的城市,然后回到出发点,使得总的旅行距离最短。这是一个经典的组合优化问题,属于 NP-hard 问题,意味着随着城市数量的增加,寻找最优解的时间复杂度呈指数级增长。
TSP 可以形式化地描述为:给定一个带权完全图 G = ( V , E ) G = (V, E) G

遗传算法(Genetic Algorithm, GA)是一种模拟自然选择过程的优化算法,常用于求解复杂问题,如旅行商问题(Traveling Salesman Problem, TSP)。TSP是一个经典的组合优化问题,目标是找到访问一组城市的最短路径并返回起点。 以下是使用Python的`deap`简单演示遗传算法解决TSP的一个基本代码框架: ```python import random from deap import base, creator, tools # 创建遗传算法所需工具 creator.create("FitnessMax", base.Fitness, weights=(1.0,)) creator.create("Individual", list, fitness=creator.FitnessMax) toolbox = base.Toolbox() toolbox.register("population", tools.initRepeat, list, creator.Individual) toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05) toolbox.register("select", tools.selTournament, tournsize=3) # 初始化问题的数据,例如城市列表和距离矩阵 cities = ... # 假设这是一个二维数组,表示每个城市的坐标 distances = ... # 计算城市之间的实际距离 def eval_tour(individual): total_distance = 0 for i in range(len(individual)): total_distance += distances[individual[i-1]][individual[i]] return (total_distance,), toolbox.register("evaluate", eval_tour) toolbox.register("update_fitness", tools.map, toolbox.evaluate) # 主循环 pop = toolbox.population(n=100) # 初始种群大小 for gen in range(100): # 迭代次数 offspring = toolbox.select(pop, len(pop)) # 选择 offspring = [toolbox.clone(ind) for ind in offspring] # 克隆避免直接修改原始种群 offspring = [toolbox.mate(*ind) for ind in zip(offspring[::2], offspring[1::2])] # 配对交叉 offspring = [toolbox.mutate(ind) for ind in offspring] # 变异 invalid_ind = [ind for ind in offspring if not ind.fitness.valid] # 检查是否满足约束 fitnesses = toolbox.map(toolbox.update_fitness, invalid_ind) # 更新适应度 for ind, fit in zip(invalid_ind, fitnesses): ind.fitness.values = fit pop[:] = offspring # 替换种群 best_solution = min(pop, key=lambda x: x.fitness.values[0]) # 获取最佳解决方案 ```
评论 65
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值