进化卷积神经网络架构设计:基因编码与 Keras 实现
0. 前言
我们已经学习了如何构建卷积神经网络 (Convolutional Neural Network, CNN),在本节中,我们将了解如何将 CNN
模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。
1. EvoCNN 原理
进化卷积神经网络 (Evolutionary Convolutional Neural Network
, EvoCNN
) 是一种结合了进化算法和卷积神经网络的方法。
我们知道进化算法是一类基于生物进化过程中的选择、变异和竞争机制的优化算法。在进化卷积神经网络中,进化算法用来优化卷积神经网络 (Convolutional Neural Network
, CNN
) 的结构或超参数,以提升其性能和适应特定任务的能力。
1.1 工作原理
EvoCNN
可以利用进化算法来自动设计 CNN
的网络结构,包