图神经网络实战(23)——使用异构图神经网络执行异常检测

图神经网络实战(23)——使用异构图神经网络执行异常检测

0. 前言

异常检测 (anomaly detection) 是机器学习中的一项流行任务,旨在识别数据中偏离预期行为的模式或观测。这一基本问题在现实世界总具有广泛应用,例如检测金融交易中的欺诈行为、识别制造过程中的缺陷产品以及检测计算机网络中的网络攻击。
可以训练图神经网络 (Graph Neural Networks, GNN) 学习网络的正常行为,然后识别偏离该行为的节点或模式。GNN 能够理解复杂的关系,因此特别适合检测微弱信号。此外,GNN 还可以扩展到大规模数据集,是处理大量数据的高效工具。
在本节中,我们将构建用于计算机网络中异常检测的 GNN 应用程序。首先,介绍 CIDDS-001 数据集,其包含计算机网络中的攻击和良性流量。接下来,处理该数据集,为输入 GNN 做准备。然后,实现异构图神经网络 (Heterogeneous GNN),以处理不同类型的节点和边。最后,我们将使用处理后的数据集对 <

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值