PyTorch生成式人工智能(13)——WGAN详解与实现

0. 前言

生成对抗网络 (Generative Adversarial Network, GAN) 模型训练过程通常会面临一些问题,如模式崩溃(生成器找到了一种能够有效欺骗判别器的输出类型,然后将其输出收缩到这些少数几种模式,忽视其他变化)、梯度消失和收敛速度慢等。Wasserstein GAN (WGAN) 引入了 Wasserstein 距离作为损失函数,提供了更平滑的梯度流和更稳定的训练,减轻了模式崩溃等问题。

1. WGAN 与梯度惩罚

Wasserstein GAN (WGAN) 是一种用于提高 GAN 模型训练稳定性和性能的技术。常规生成对抗网络 (Generative Adversarial Network, GAN) 包含两个组件——生成器和判别器。生成器创建虚假数据,而判别器评估数据是真实还是虚假。训练涉及一个竞争性的零和博弈,其中生成器试图欺骗判别器,而判别器则试图准确区分真实和虚假的数据实例。
研究人员提出使用 Wasserstein 距离(衡量两个分布之间相似性度量)代替二元交叉熵作为损失函

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值