PyTorch生成式人工智能(13)——WGAN详解与实现
0. 前言
生成对抗网络 (Generative Adversarial Network, GAN) 模型训练过程通常会面临一些问题,如模式崩溃(生成器找到了一种能够有效欺骗判别器的输出类型,然后将其输出收缩到这些少数几种模式,忽视其他变化)、梯度消失和收敛速度慢等。Wasserstein GAN
(WGAN
) 引入了 Wasserstein
距离作为损失函数,提供了更平滑的梯度流和更稳定的训练,减轻了模式崩溃等问题。
1. WGAN 与梯度惩罚
Wasserstein GAN
(WGAN
) 是一种用于提高 GAN
模型训练稳定性和性能的技术。常规生成对抗网络 (Generative Adversarial Network, GAN) 包含两个组件——生成器和判别器。生成器创建虚假数据,而判别器评估数据是真实还是虚假。训练涉及一个竞争性的零和博弈,其中生成器试图欺骗判别器,而判别器则试图准确区分真实和虚假的数据实例。
研究人员提出使用 Wasserstein
距离(衡量两个分布之间相似性度量)代替二元交叉熵作为损失函