TensorFlow深度学习实战(18)——K-means 聚类详解

0. 前言

K-means 聚类是一种常用的无监督学习算法,用于将数据集划分为若干个互不重叠的簇 (cluster),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。在本节中,将介绍 K-means 聚类的基本原理与局限性,并使用 TensorFlow 实现 K-means 聚类。

1. K-means 聚类

K-means 聚类是一种数据聚类技术,即将数据划分为指定数量的数据点,是一种无监督学习技术,通过识别给定数据中的模式工作。
有多种聚类技术,如层次聚类、贝叶斯聚类或划分聚类。K-means 聚类属于划分聚类,将数据分成 k 个簇。每个簇有一个中心,称为质心,簇的数量 k 需要自行指定。K-means 算法的工作流程如下:

  1. 随机选择 k 个数据点作为初始质心(簇中心)
  2. 将每个数据点分配给最近的质心;可以使用不同的度量方法来确定接近度,最常见的是欧几里得距离
  3. 使用当前的簇成员重新计算质心,以使(每个点与其质心
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值