生成模型实战 | 条件生成对抗网络
0. 前言
生成对抗网络 (Generative Adversarial Network, GAN) 是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的 GAN
生成过程是随机的,无法控制生成内容的具体属性。条件生成对抗网络 (Conditional GAN
, CGAN
) 通过引入类别标签等条件信息,使生成过程变得可控,极大拓展了 GAN
的应用场景。本节将深入解析 CGAN
的技术原理,并使用 PyTorch
在 CIFAR-10
数据集上实现一个完整的 CGAN
模型。
1. 条件生成对抗网络
1.1 GAN 基础回顾
生成对抗网络 (Generative Adversarial Network, GAN) 由生成器 (Generator
) 和判别器 (Discriminator
) 组成,生成器将将随机噪声转换为逼真的数据样本,而判别器区分真实样本和生成