图神经网络实战——图机器学习与嵌入算法
0. 前言
机器学习是人工智能的一个重要分支,它致力于让系统能够从数据中自主学习并持续优化。这项技术在诸多应用领域取得了显著成果,特别是在那些难以通过明确定义规则来解决具体任务的场景中表现尤为突出。例如,我们可以训练算法执行垃圾邮件识别、多语言文本翻译和图像目标识别等任务。
近年来,将机器学习应用于图数据的研究日益受到关注。相较于传统机器学习方法,图机器学习的主要优势在于能够自动学习更优的数据表征、提升预测准确度、发现潜在模式,以及更深入地理解复杂动态关系。本节首先回顾机器学习基本概念。然后重点介绍图机器学习 (Graph Machine Learning
) 中的表示学习,最后通过实践案例理解这些理论概念。
1. 图机器学习
作为人工智能 (Artificial Intelligence
, AI
) 的重要分支,机器学习 (Machine Learning
, ML
) 近年来备受关注。这类计算机算法能够通过经验自主学习和提升能力,而无需显式编程。这种方法的灵感来源于自然界的学习过程——就像运动员学习新动作时,会通过模仿教练、不断试错来逐步掌握技能。
机器学习的本质是一个优化问题。目标是寻找在特定任务上表现最优的数学模型。性能可以通过特定的性能指标(或损失函数)来衡量。在常见的学习任务中,算法利用大量数据迭代做出预测,在每次迭代中,根据损失函数进行评估,由此产生的误差用来更新模型参数,逐步提升性能,这一过程通常称为训练。
更正式地讲,考虑一个特定的任务