PyTorch深度学习实战(48)——基于Transformer实现机器翻译

0. 前言

我们已经学习了如何从零开始构建了一个 Transformer 模型,本节将以英语到法语的翻译为例,通过介绍如何训练 Transformer 模型将英语句子转换为法语,深入理解 Transformer 的架构及自注意力机制的运作方式。
假设我们有英语到法语的翻译数据,目标是使用这个数据集训练编码器-解码器 Transformer。首先,使用子词分词方法,将英语和法语短语拆分成词元 (token)。然后,构建英语和法语的词汇表,词汇表包含每种语言中所有独特词元。词汇表能够将英语和法语短语表示为索引序列。接下来,使用词嵌入 (word embedding) 将这些索引(本质上是独热编码向量)转换为紧凑的向量表示。将位置编码 (positional encoding) 添加到词嵌入中,形成输入嵌入 (input embeddings)。位置编码使 Transformer 能够知道序列中词元的顺序。
最后,使用英语到法语翻译数据集来训练编码器-解码器 Transformer,从而实现英语到法语的翻译。训练完成后,使用训练好的 Transformer 翻译常见的英语短语为法语。具体来说,使用编码器捕捉英语短语的含义,然后利用训练好的 Transf

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值