实现简单的神经网络

本文介绍使用Python结合TensorFlow框架实现简单神经网络的过程。主要内容包括网络结构定义、损失函数及优化算法选择,以及通过迭代训练调整网络权重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python语言+tensorflow框架实现简单的神经网络


训练神经网络的过程一般分为3个步骤(不随网络结构的变化而变化)

1.定义网络结构和前向传播的输出结果

2.定义损失函数以及选择反向传播优化算法

3.生成会话,并在训练数据上反复运行反向传播优化算法


完整代码如下:

import tensorflow as tf

from numpy.random import RandomState

batch_size=8

w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))

x=tf.placeholder(tf.float32,shape=(None,2),name='x-input')
y_=tf.placeholder(tf.float32,shape=(None,1),name='y-input')

a=tf.nn.relu(tf.matmul(x,w1))
y=tf.nn.relu(tf.matmul(a,w2))

cross_entropy=-tf.reduce_mean(y_*tf.log(tf.clip_by_value(y,1e-10,1.0)))
train_step=tf.train.AdamOptimizer(0.001).minimize(cross_entropy)

rdm=RandomState(1)
dataset_size=128
X=rdm.rand(dataset_size,2)
Y=[[int(x1+x2<1)] for (x1,x2) in X]

with tf.Session() as sess:
    init_op=tf.initialize_all_variables()
    sess.run(init_op)
    
    print (sess.run(w1))
    print (sess.run(w2))
    
    STEPS=5000
    for i in range(STEPS):
        start=(i+batch_size)%dataset_size
        end=min(start+batch_size,dataset_size)
        
        sess.run(train_step,feed_dict={x:X[start:end],y_:Y[start:end]})
        
        if i%1000==0:
            total_entropy=sess.run(cross_entropy,feed_dict={x:X,y_:Y})
            print("After %d training step(s),cross entropy on all data is %g"%(i,total_entropy))
        
    print(sess.run(w1))
    print(sess.run(w2))

首先导入模块——tensorflow和numpy,后续中利用numpy生成数据集

然后定义batch_size,神经网络训练过程是批处理,每次处理一批数据,在此定义每次处理的数据量

然后定义神经网络参数,随机初始化权值w1,w2。

定义输入变量,x和y_。类型为浮点型的n维2列,n维1列的数组。

定义网络前向传播,a即为隐层,y为实际输出。

然后定义损失函数和反向传播优化算法。采用交叉熵来定义损失函数,优化算法采用AdamOptimizer,定义学习率为0.001,目的是最小化交叉熵

(以上网络定义完成)

随机产生输入数据,X是128*2的矩阵,Y是128*1的矩阵,其中Y里元素0表示负样本,1表示正样本。

接下来,创建一个会话来运行tensorflow程序。

迭代5000次(STEPS),每次选择batch_size个样本进行训练,每迭代1000次,输出一次训练交叉熵(逐渐减小)。

最后训练结束,输出网络权值。


运行结果如下:


最开始输出初始化权值,然后输出迭代信息,最后输出训练后的权值。

<think>嗯,用户这次明确询问学习AUTOSAR所需的基础知识,看来是准备系统学习汽车软件架构。之前虽然详细讲解过BSW学习路线,但用户更关注前置技能,说明可能是刚接触这个领域的工程师或学生。 用户特意强调要参考之前的对话,注意到上次提到的MCAL、通信栈等术语这次可以复用。不过需要更基础的解释,比如"实时操作系统"这样的概念对新手可能不够友好,应该拆解成更具知识点。 从用户追问预备知识的行为看,ta可能正在评估自身知识储备是否足够学习AUTOSAR。需要明确区分硬性要求和加分技能:C语言和嵌入式系统是门槛,而CAN总线协议这类属于应用场景知识。特别要注意提醒数学要求——虽然AUTOSAR开发不直接涉及复杂数学,但状态机等概念需要逻辑思维。 上次推荐的B站课程《AutoSAR从入门到精通》依然适用,但这次要补充说明该课程第一章就讲解预备知识。GitHub的arccore项目对初学者可能偏难,换成更基础的AUTOSAR文档链接更实用。 考虑到用户连续两次询问学习路径,应该设计成渐进式清单。把"核心基础知识"和"扩展知识"分开列项,避免给初学者压力。最后的相关问题特意加入"是否需要学习C++",因为很多汽车电子工程师有C基础但可能不熟悉面向对象。</think>以下是学习AUTOSAR所需的**系统化基础知识系**,分为核心基础与扩展知识两大模块,结合汽车电子开发实际需求整理: --- ### 一、核心基础知识 #### 1. **嵌入式系统基础** - **C语言编程**: - 掌握指针、结构、内存管理(堆/栈) - 理解`volatile`、`const`等硬件相关关键字[^1] - **微控制器(MCU)架构**: - ARM Cortex-M/R系列(如STM32、NXP S32K) - 中断控制器(NVIC)、时钟系统、外设寄存器操作 #### 2. **汽车通信协议** | 协议 | 关键特性 | 学习重点 | |---------|--------------------------|------------------------------| | **CAN** | 差分信号、仲裁机制 | 标准帧/扩展帧、ID过滤规则[^2] | | **LIN** | 主从结构、低成本 | 调度表设计、诊断帧 | | **Ethernet** | 高速通信(100Mbps+) | TCP/IP协议栈、SOME/IP协议[^2] | #### 3. **实时操作系统(RTOS)概念** - 任务调度机制(优先级抢占/时间片轮转) - 同步机制:信号量、互斥锁、事件标志 - 内存保护(MPU)与可信任务设计[^3] --- ### 二、扩展知识(提升开发效率) #### 1. **软件开发流程** - **V模型开发流程**:需求→设计→编码→单元测试→集成测试 - **配置驱动开发**:掌握ARXML文件结构与工具链交互逻辑 $$ \text{需求文档} \xrightarrow{\text{工具配置}} \text{ARXML} \xrightarrow{\text{代码生成}} \text{BSW/SWC代码} $$ #### 2. **工具链基础** - **Vector Davinci**:BSW模块配置、RTE生成 - **ETAS ISOLAR**:SWC设计与接口定义 - **调试工具**:CANoe(总线分析)、Lauterbach(MCU调试) #### 3. **汽车电子特定知识** - **ECU硬件基础**:电源管理(PMIC)、看门狗电路 - **功能安全**:ISO 26262标准中的ASIL等级划分 - **诊断协议**:UDS(Unified Diagnostic Services)服务(如$0x22$读数据)[^2] --- ### 三、学习资源推荐 1. **理论教材** - 《嵌入式实时操作系统μC/OS-II》(Jean J.Labrosse) - 《汽车CAN总线系统原理与应用》(罗峰) 2. **实践平台** - **开发板**:NXP S32K144 EVB(支持AUTOSAR MCAL) - **仿真**:CANoe Demo + Panel Designer模拟ECU交互 3. **官方文档** - AUTOSAR官网:《AUTOSAR_EXP_SoftwareArchitecture》 - ISO 26262-6:2018(功能安全部分) ```c /* 示例:AUTOSAR开发中典型的内存对齐要求 */ typedef struct { uint16_t signal_A; /* 信号A */ uint8_t signal_B; /* 信号B */ uint32_t signal_C; /* 信号C(需4字节对齐) */ } __attribute__((aligned(4))) Com_SignalGroup_t; // 显式指定4字节对齐[^1] ``` --- ### 四、能力自检清单 掌握以下内容可开始AUTOSAR学习: - [ ] 能使用C语言实现状态机控制逻辑 - [ ] 理解CAN帧结构(如ID=0x1A0, DLC=8) - [ ] 配置过MCU外设(如GPIO控制LED) - [ ] 了解RTOS任务优先级反转问题 > 注:若未满足上述基础,建议先补充嵌入式核心知识再进入AUTOSAR系[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值