【Spark基础编程】 第8章 Spark MLlib

文章介绍了Spark的机器学习库SparkMLlib,包括其对大数据机器学习的支持,以及MLlib提供的算法和工具。重点讲述了机器学习工作流的概念,如DataFrame、Transformer、Estimator和Pipeline的使用,阐述了如何构建机器学习流水线,并提及特征抽取、转化和选择在流程中的重要性,同时提到了分类和回归等学习任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录



前言


【 第8章 Spark MLlib 】

8.1 Spark MLlib简介

8.1.1 什么是机器学习

  • 机器学习可以看做是一门人工智能的科学,该领域的主要研究对象是人工智能。
  • 机器学习利用数据或以往的经验,以此优化计算机程序的性能标准。
    在这里插入图片描述
  • 机器学习强调三个关键词:算法、经验、性能

8.1.2 基于大数据的机器学习

  • 机器学习算法涉及大量迭代计算
  • 基于磁盘的MapReduce不适合进行大量迭代计算
  • 基于内存的Spark比较适合进行大量迭代计算

8.1.3 Spark 机器学习库MLLib

  • Spark提供了一个基于海量数据的机器学习库,它提供了常用机器学习算法的分布式实现
  • 开发者只需要有 Spark 基础并且了解机器学习算法的原理,以及方法相关参数的含义,就可以轻松的通过调用相应的 API 来实现基于海量数据的机器学习过程
  • pyspark的即席查询也是一个关键。算法工程师可以边写代码边运行,边看结果
  • 需要注意的是,MLlib中只包含能够在集群上运行良好的并行算法,这一点很重要
  • 有些经典的机器学习算法没有包含在其中,就是因为它们
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值