机器学习复习笔记--朴素贝叶斯算法

本文深入探讨了朴素贝叶斯算法,包括其定理、独立性假设、分类流程及实际应用。通过实例解析算法工作原理,并阐述了该算法在分类任务中的优势,如简单易实现、时空效率高和稳定性好。

朴素贝叶斯算法 

一、朴素贝叶斯定理

贝叶斯公式:

A:样本   B:类别

P(B|A):根据A参数值判断属于类别B的概率,也称为后验概率

P(A|B) :在类别B中观察到样本A的概率

P(B):样本所属类别B的概率,也称为先验概率

P(A):在数据库中观察到A的概率

    贝叶斯定理:

二、算法原理

假设分类项的各个属性之间是相互独立的,则构造出来的分类算法是朴素的。

基本思想:

对于给定的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,则将此待分类项归为哪一类。

具体操作如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值