tf.keras.callbacks.ModelCheckpoint保存模型出现每个step保存一次模型的情况

本文探讨了在使用TensorFlow的ModelCheckpoint回调时遇到的问题,即模型每步而非每个epoch保存。通过深入理解save_freq参数,发现其实际含义是每多少步保存一次模型。解决方案是设置save_freq为训练步数等于一个epoch的次数,或直接设为'epoch',以实现每个epoch保存一次模型。若需多个epoch保存,则可以设置为epoch的倍数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 tf.keras.callbacks.ModelCheckpoint保存模型出现每个step保存一次模型而不是想要的一个epoch保存一次模型,或者多个epoch保存一次模型,下面是个类的官方定义:

tf.keras.callbacks.ModelCheckpoint(
    filepath, monitor='val_loss', verbose=0, save_best_only=False,
    save_weights_only=False, mode='auto', save_freq='epoch',
    options=None, **kwargs
)

 问题出在save_freq这个参数上,看到其他博主把这个参数解释成多少个epoch保存一次模型的频率,但是这就导致上述问题的出现,经过翻看官方文档的介绍,这个参数其实是每多个step保存一次,所以当你指定save_freq为10时,会发现每10个epoch保存一次模型。所以解决方案就是让save_freq=train_step_per_epochs,这样就可以一个epoch保存一次模型了,或者直接指定save_freq='epoch'也是同样的效果,当想多个epoch保存一次模型就使save_freq=N*train_step_per_epochs即可

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值