metadatas 参数主要目的是为了存储与文档内容相关的附加信息

在设计 metadatas 参数时,主要目的是为了存储与文档内容相关的附加信息(即元数据),以便在检索时能够更灵活地过滤、排序或展示结果。metadatas 的设计思想可以总结为以下几点:


1. 存储文档的附加信息

metadatas 的主要作用是存储文档的附加信息,这些信息可以包括:

  • 文档的唯一标识:例如 doc_id,用于唯一标识文档。
  • 文档的路径或来源:例如 doc_path,用于记录文档的存储路径或来源。
  • 文档的创建时间或修改时间:例如 created_atupdated_at,用于记录文档的时间信息。
  • 文档的作者或所属用户:例如 authoruser_id,用于记录文档的创建者或所属用户。
  • 文档的分类或标签:例如 categorytags,用于记录文档的分类或标签信息。
  • 文档的权限信息:例如 permission_tags,用于记录文档的权限控制信息。

这些附加信息可以帮助用户在检索时更好地理解文档的背景,或者用于实现更复杂的业务逻辑(如权限控制、分类过滤等)。


2. 支持灵活的检索和过滤

metadatas 的设计思想之一是支持基于元数据的灵活检索和过滤。例如:

  • 按文档 ID 过滤:可以根据 doc_id 过滤出特定文档。
  • 按文档路径过滤:可以根据 doc_path 过滤出来自特定路径的文档。
  • 按时间范围过滤:可以根据 created_atupdated_at 过滤出特定时间范围内的文档。
  • 按权限过滤:可以根据 permission_tags 过滤出用户有权访问的文档。

通过将元数据存储在向量数据库中,可以在检索时直接使用这些元数据进行过滤,而无需额外的外部查询。


3. 支持文档的上下文信息

metadatas 还可以用于存储文档的上下文信息,例如:

  • 文档的分块信息:如果文档被分块存储,可以记录每个块的起始位置、结束位置等信息。
  • 文档的版本信息:可以记录文档的版本号或版本历史。
  • 文档的关联信息:可以记录文档与其他文档的关联关系(如父子关系、引用关系等)。

这些上下文信息可以帮助用户更好地理解文档的结构和关系。


4. 支持业务逻辑的扩展

metadatas 的设计思想还包括支持业务逻辑的扩展。通过将业务相关的信息存储在元数据中,可以在不修改核心检索逻辑的情况下实现复杂的业务需求。例如:

  • 权限控制:将权限信息存储在元数据中,可以在检索时动态过滤出用户有权访问的文档。
  • 个性化推荐:将用户偏好或行为信息存储在元数据中,可以实现个性化的文档推荐。
  • 审计和日志:将操作日志或审计信息存储在元数据中,可以方便地追踪文档的变更历史。

5. 示例:metadatas 的设计

以下是一个 metadatas 的设计示例,展示了如何存储多种类型的元数据:

metadatas = [
    {
        "doc_id": 1,  # 文档的唯一标识
        "doc_path": "/path/to/doc1.pdf",  # 文档的存储路径
        "created_at": "2023-10-01T12:00:00Z",  # 文档的创建时间
        "author": "user123",  # 文档的作者
        "category": "legal",  # 文档的分类
        "permission_tags": ["group_a", "group_b"],  # 文档的权限标签
        "version": 1  # 文档的版本号
    },
    {
        "doc_id": 2,
        "doc_path": "/path/to/doc2.pdf",
        "created_at": "2023-10-02T12:00:00Z",
        "author": "user456",
        "category": "finance",
        "permission_tags": ["group_b"],
        "version": 2
    }
]

6. 在检索时使用元数据

在检索时,可以通过元数据实现灵活的过滤和排序。例如:

  • doc_id 过滤
    vector_store.as_retriever(search_kwargs={"filter": {"doc_id": 1}})
    
  • category 过滤
    vector_store.as_retriever(search_kwargs={"filter": {"category": "legal"}})
    
  • permission_tags 过滤
    vector_store.as_retriever(search_kwargs={"filter": {"permission_tags": {"$in": ["group_a"]}}})
    

总结

metadatas 的设计思想主要包括:

  1. 存储文档的附加信息,如 doc_iddoc_pathauthor 等。
  2. 支持基于元数据的灵活检索和过滤。
  3. 存储文档的上下文信息,如分块信息、版本信息等。
  4. 支持业务逻辑的扩展,如权限控制、个性化推荐等。

通过合理设计 metadatas,可以实现更强大、更灵活的文档检索和管理功能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值