3D变化检测框架介绍
1. 引言
3D变化检测是计算机视觉领域的重要课题之一,尤其在动态环境监测、自动驾驶等领域有着广泛的应用前景。传统的3D变化检测方法主要依赖于几何方法,如通过RGB或深度投影的不一致性图来检测变化。然而,这些方法通常只能检测到表面的变化,对于物体内部或遮挡部分的变化难以准确捕捉。本文将详细介绍一种基于几何变换一致性的3D变化检测框架,该框架能够在不依赖于物体具体定义的前提下,有效发现3D场景中的物体及其变化。
2. 场景描述与初始变化检测
2.1 场景描述
在实际应用中,我们经常遇到这样的场景:有两个3D地图——参考扫描(在时间 ( t_0 ) 记录)和重新扫描(在时间 ( t_1 ) 记录),以及场景的相机姿态。这两个3D地图可以是从激光雷达(LiDAR)、深度相机或其他3D传感器获取的数据。通过这些数据,我们可以构建出一个完整的3D场景模型,并在此基础上进行变化检测。
2.2 初始变化检测
初始变化检测是通过深度图的差异来计算的。具体步骤如下:
- 深度图获取 :从参考扫描和重新扫描中获取深度图。
- 深度图对齐 :使用相机姿态将两幅深度图对齐。
- 差异计算 :计算两幅对齐后的深度图之间的差异,得到初始变化图。
通过上述步骤,我们可以初步检测到场景中发生变化的点,这些点主要勾勒出移动物体的边界。例如,在图1和图2中,最初检测到的点主要集中在移动物体的边缘。