GARF在低纹理场景中的实际应用
1. 引言
在计算机视觉领域,处理低纹理场景一直是一个挑战。低纹理区域缺乏足够的特征点,使得传统的视觉算法难以准确地进行图像配准、姿态估计和三维重建。近年来,神经辐射场(Neural Radiance Fields, NeRF)作为一种强大的三维重建工具,已经在多个领域取得了显著的成果。然而,现有的NeRF方法在处理低纹理场景时仍然存在不足,容易受到前端SfM(Structure from Motion)管道中的离群点影响,导致相机姿态估计不可靠,进而产生伪影。
为了解决这一问题,GARF(Geometry-Aware Radiance Fields)应运而生。GARF通过引入几何感知机制,能够在低纹理场景中生成高质量的图像和深度图。本文将详细介绍GARF在低纹理场景中的实际应用和表现,展示其相对于其他方法的优势。
2. 实际应用案例
为了验证GARF在低纹理场景中的性能,研究人员使用了iPhone拍摄的低纹理场景图像进行了测试。这些场景包括室内环境、墙壁、地板等大面积的低纹理区域。实验结果表明,GARF在这些复杂场景下依然能够生成高质量的图像和深度图,而其他方法如ref-NeRF则由于前端SfM管道中的离群点导致相机姿态估计不可靠,从而产生伪影。
2.1 图7的说明
图7展示了在低纹理场景中使用GARF和ref-NeRF生成的新视角合成结果。具体而言,图7分为两部分:
- 顶部行 :使用ref-NeRF生成的渲染图像和深度图。可以看到,ref-NeRF在处理低纹理区域时出现了明显的伪影,尤其是深度图中的噪声较多