一元线性回归
clear;clc;
%一元线性回归
x=[143,145,146,147,149,150,153,154,155,156,157,158,159,160,162,164];
y=[88,85,88,91,92,93,93,95,96,98,97,96,98,99,100,102];
X=[ones(length(y),1),x'];
Y=y';
%b 参数
%bint 参数对于的置信区间
%r 残差
%rint 残差的置信区间
%stats 参数检验统计量:四个分别为:相关系数R2、F值、与F对于的P、误差方差。
% R2越接近1越好,F>F1-α(k,n-k-1)时拒绝H0,F越大,说明回归方程越显著;与F对应的概率p时拒绝H0,回归模型成立.
% p值在0.01-0.05之间,越小越好
[b,bint,r,rint,stats]=regress(Y,X);
b,bint,stats
%残差图
figure(1);
rcoplot(r,rint)
%拟合图
figure(2);
z=b(1)+b(2