【数据预处理】one hot编码(独热编码)

本文介绍了独热编码的概念,用于处理分类数据,将其转换为适合数值计算的形式。独热编码将每个类别转换为一个二进制特征,使得数据更适合于欧式空间的计算。通过sk-learn库展示了one hot编码的操作,并讨论了在某些情况下特征归一化的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、分类数据

在实际的应用场景中,有非常多的特征不是连续的数值变量,而是某一些离散的类别。比如用户的性别,用户的地址,用户的兴趣爱好等等一系列特征,都是一些分类值。这些特征一般都无法直接应用在需要进行数值型计算的算法里。

2、独热编码(one hot)

独热编码便是解决这个问题,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。
如自然编码为:0,1
独热编码为:10,01 (两位中只有一位有效)

如数字字体识别0~9中,6的独热编码为:

0000001000(六位中只有一位有效)

3、独热编码的优点

①能够处理非连续型数值特征。
②在一定程度上也扩充了特征。比如性别本身是一个特征,经过one hot编码以后,就变成了男或女两个特征。

但是,当特征类别较多时,数据经过独热编码可能会变得过于稀疏

4、独热编码原理

使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。
将离散型特征使用one-hot编码,可以会让特征之间的距离计算更加合理。我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

比如,有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值